
BRUNNIAN BRAIDS

Abstract. We record some observation about Brunnian braids
on the sphere, which lead to the conclusion that the the cyclic
group Z/(k − 1)Z acts on

Brunnk(S2)/j(Brunnk(D2)) ∼= πk−1(S2),

in k (potentially) different ways. Here j is induced by the natural
inclusion of D2 into S2 as the upper hemisphere.

1. Some observations about Brunnian braids

Given a manifold X, let F (X, k) denote the configuration space of k
distinct, ordered points in X; that is

F (X, k) = {(x1, . . . , xk) ∈ Xk : xi 6= xj for i 6= j}.

The pure braid groups on k strands in X is defined as Pk(X) =
π1F (X, k); since any two configurations in X are connected by an iso-
topy, we will usually suppress a choice of basepoint configuration. We
have deletion operators ∂Xl : F (X, k)→ F (X, k−1), l = 1 . . . , k, which
are fibrations whose fibers are of the form X \c, where c ∈ F (X, k−1).
The induced maps dXl : Pk(X) → Pk−1(X) correspond to deletion of
strands. When X = D2, we simply write ∂l and dl; when X = S2 we
write ∂l and dl.

Viewing D2 as the upper hemisphere in S2 via the map j(x, y) =

(x, y,
√

1− x2 − y2), we obtain a (surjective) group homomorphism

jk: Pk(D
2)→ Pk(S

2)

whose kernel will be denoted Nk (we will suppress k from the notation
when no confusion is likely). Note that the deletion operators commute
with these maps; that is, dl ◦ jk = jk−1dl. By definition,

Brunnk(D
2) =

k⋂
l=1

ker(dl)

and

Brunnk(S
2) =

k⋂
l=1

ker(dl).

1



2 BRUNNIAN BRAIDS

Let xl = 1
2
eπi(l−1)/k, l = 2, . . . , k, and let x1 = 0. The configuration

c = (x1, . . . , xk) will serve as our basepoint for F (D2, k), and j(c) will
be the basepoint of F (S2, k). The fiber of ∂1 over ∂1(c) is homeomor-
phic to D2 \ {x2, . . . , xk}, whose fundamental group (based at x1 = 0)
is free on generators γl represented by loops winding once counter-
clockwise around xl (l = 2, . . . , k). We denote the corresponding braid
in Pk(D

2) by p1,l; note that in this braid, the first strand runs once
counterclockwise around the lth strand while the other strands remain
straight.

We now consider the fibration sequence

D2 \ {x2, . . . , xk} −→ F (D2, k)
c∂1−→ F (D2, k − 1).

Since π2(F (D2, k − 1)) = 0 (these configuration spaces are aspherical,
as is well-known and can be proven by induction on n using these
fibration sequences) the above fibration actually yields a short-exact
sequence of fundamental groups

(1) 1 −→ π1(D
2 \ {x2, . . . , xk}) −→ Pk(D

2)
d1−→ Pk−1(D

2) −→ 1.

In summary, we have the following fact.

Lemma 1.1. The group ker(d1) is freely generated by the braids p1,l.

Next, let yi = j(xi) ∈ S2. Consider the commutative diagram

D2 \ {x2, . . . , xk} //

��

F (D2, k) //

jk
��

F (D2, k − 1)

jk−1

��
S2 \ {y2, . . . , yk} // F (S2, k) // F (S2, k − 1)

in which the vertical maps are induced by j. The first row gives rise
to the short exact sequence (1) on π1. For k > 4, the second row also
induces a short exact sequence on π1, since π2(F (S2, k − 1)) = 0 by a
result of Fadell and Van Buskirk [2] (see also [1, Corollary 2.3]). Hence
for k > 4, we obtain a diagram of groups
(2)

1 // π1(D
2 \ {x2, . . . , xk})

f //

q

��

Pk(D
2)

d1 //

jk
��

Pk−1(D
2)) //

jk−1

��

1

1 // π1(S
2 \ {y2, . . . , yk})

g // Pk(S
2)

d1 // Pk−1(S
2) // 1

with exact rows.
Letting γl = q(γl), the Seifert–Van Kampen Theorem yields

π1(S
2 \ {y2, . . . , yk}) = 〈γ2, . . . , γk | γ2γ3 . . . γk〉;
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in particular q is surjective with kernel the normal subgroup generated
by γ2γ3 . . . γk. Let p1,l denote the braid g(γl) = jk(p1,l). Rearranging
the presentation also yields the following fact.

Lemma 1.2. Assume that k > 4. Then ker(d1) is freely generated by
any k − 2 of the braids p1,l, l = 2, . . . , k.

Corollary 1.3. The groups Brunnk(D
2) and (for k > 4) Brunnk(S

2)
are free.

Indeed, they are subgroups of the free groups ker(d1) and ker(d1),
respectively. We note that, according to [1, Proposition 7.2.2], the
group Brunn4(S

2) is free on 5 generators, while Brunn3(S
2) = P3(S

2) ∼=
Z/2Z and Brunn2(S

2) = P2(S
2) = {1}.

The 9–Lemma states that a surjective map of exact sequences of
groups induces an exact sequence of kernels. Applying this to Dia-
gram 2, we obtain an inductive description of Nk = ker(jk).

Lemma 1.4. For k > 4, there is an exact sequence of groups

1 −→ ker(q) = 〈〈γ2γ3 . . . γk〉〉 −→ Nk −→ Nk−1 −→ 1.

Proposition 1.5. Assume that k > 4, and let g be the map from (2).
For l = 2, . . . , k,

(3) ker(d1) ∩ ker(dl) = g
(
〈〈γl〉〉

)
= 〈〈p1,l〉〉,

and consequently (using injectivity of g)

Brunnk(S
2) =

k⋂
l=2

〈〈p1,l〉〉 =
k⋂
l=2

g
(
〈〈γl〉〉

)
∼=

k⋂
l=2

〈〈γl〉〉.

Here 〈〈γl〉〉 denotes the normal subgroup of π1(S
2 \ (k − 1)) generated

by γl, and 〈〈p1,l〉〉 is the normal subgroup of Pk(S
2) generated by p1,l.

Proof. Consider the commutative diagram

(4) S2 \ {y2, . . . , yk}
eg //

� _

i
��

F (S2, k)

∂l

��
S2 \ {y2, . . . , ŷl, . . . , yk} // F (S2, k − 1),

where the horizontal maps are inclusions of fibers of ∂1 (so g̃∗ = g).
Since

ker(d1) ∩ ker(dl) = ker
(
dl: ker(d1) −→ Pk−1(S

2)
)
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and the horizontal maps in (4) are injective on π1, we see that

ker(d1) ∩ ker(dl) = g(ker(i∗)) = g
(
〈〈γl〉〉

)
.

It follows that g
(
〈〈γl〉〉

)
C Pk(S

2), and since g(γ) = p1,l we have

〈〈p1,l〉〉 6 g
(
〈〈γl〉〉

)
,

and the reverse containment is immediate. �

We note that the same argument gives the analogous result for the
disk, without the restriction on k.

Proposition 1.6. For l = 2, . . . , k,

(5) ker(d1) ∩ ker(dl) = f
(
〈〈γl〉〉

)
= 〈〈p1,l〉〉,

and consequently (since f is injective)

Brunnk(D
2) =

k⋂
l=2

f
(
〈〈γl〉〉

)
∼=

k⋂
l=2

〈〈γl〉〉.

Here 〈〈γl〉〉 denotes the normal subgroup of π1(D
2 \ (k − 1)) generated

by γl.

Remark 1.7. We note that Propositions 1.5 and 1.6 show that the
normal subgroups of Pk(S

2) and Pk(D
2) generated by p1,l and p1,l (re-

spectively) are in fact the same as the normal subgroups of ker(d1) and
ker(d1) generated by these elements; that is, for any β ∈ Pk(D2) there
exists β′ ∈ ker(d1) such that βp1,lβ

−1 = β′p1,l(β
′)−1 and similarly for

Pk(S
2). Can this be seen directly from standard presentations of the

braid group?

The following observation will not be used in the next section, but
seems worth recording anyhow.

Corollary 1.8. For k > 4, there is an isomorphism

Brunnk(S
2)

Brunnk(D2)
∼=
⋂k
l=2 j

(
〈〈p1,l〉〉

)
j(
⋂k
l=2〈〈p1,l〉〉)

.

Proof. Since j(p1,l) = p1,l this follows from the Propositions 1.5 and
1.6, along with the fact that if π: G→ H is a surjective group homo-
morphism, then for every γ ∈ G we have π(〈〈γ〉〉) = 〈〈π(γ)〉〉. �
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2. Operations on Brunnian braids

We have observed (Lemma 1.1) that ker(d1) is free, with a relatively
simple basis. In this section we use this fact to study the quotient
groups Brunnk(S

2)/j(Brunnk(D
2)), which, by the main results of [1],

are isomorphic to πk−1(S
2) when k > 5.

Proposition 2.1. For k > 4, there is an injective group homomor-
phism

Brunnk(S
2)

j(Brunnk(D2))

φ
↪→ ker(d1)

(N ∩ ker(d1)) · Brunnk(D2)
=

ker(d1)

(〈〈p1,2 · · · p1,k〉〉) · Brunnk(D2)
.

Note here that N ∩ ker(d1) = 〈〈p1,2 · · · p1,k〉〉 by Lemma 1.4.

Remark 2.2. One can see directly that in each of the quotients appear-
ing in the Lemma, the subgroup is in fact normal in the larger group.
To see that

j(Brunnk(D
2)) C Brunnk(S

2),

note that Brunnk(D
2) C Pk(D

2) (as it is the intersection of the ker-
nels of the homomorphisms dl) and j is surjective. Also, Brunnk(D

2) C
Pk(D

2) implies that Brunnk(D
2) is also normal in the subgroup ker(d1) ⊂

Pk(D
2), and since N and ker(d1) are normal in Brunnk(D

2) so is their
intersection. Thus (N ∩ ker(d1)) · Brunnk(D

2) is the product of two
normal subgroups, hence normal.

Remark 2.3. One might be able to say something interesting about
πk−1(S

2) by analyzing torsion in the quotient group

ker(d1)

(N ∩ ker(d1)) · Brunnk(D2)
.

For instance, it would be very interesting to bound the size of abelian
torsion subgroups in this quotient. Results of James, Moore, and Selick
show that non-trivial elements in πk−1(S

2) with prime-power order al-
ways have either prime order or order 4 (see Section 8.5 of Berrick et
al. [1]). So it would be interesting to understand elements of prime
order in this quotient.

It’s possible that the Proposition is somehow related to Theorem 1.3
of Berrick et al. [1].

Proof of Proposition 2.1. The necessary geometric facts all come
from our analysis of Diagram (2). The remainder of the argument is
completely formal.
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To define φ, say β ∈ Brunnk(S
2). We claim that β ∈ j(ker(d1)). In

fact, chasing Diagram (2) shows that

ker(d1) ⊂ j(ker(d1)).

We may now write β = j(α) for some α ∈ ker(d1), and we define

φ([β]) = [α].

To check that this gives a well-defined function, say β′ ∈ Brunnk(S
2)

and [β′] = [β] ∈ Brunnk(S
2)

j(Brunnk(D2))
; then

(6) β−1β′ ∈ j(Brunnk(D
2)).

We must show that if α′ ∈ Pk(D2) satisfies j(α′) = β′ and d1(α
′) = 1,

then [α′] = [α] in

ker(d1)

(N ∩ ker(d1)) · Brunnk(D2)
,

or in other words that

α−1α′ ∈ (N ∩ ker(d1)) · Brunnk(D
2).

Lemma 2.4.

(N ∩ ker(d1)) · Brunnk(D
2) = ker(d1) ∩ j−1

(
j(Brunnk(D

2))
)
.

Proof. For any group G and any normal subgroups M,B,K C G with
B ≤ K, an elementary computation shows that

(M ∩K)B = K ∩MB.

Now set M = N , B = Brunnk(D
2), and K = ker(d1). �

Returning to the proof of the Proposition, Lemma 2.4 (along with
the fact that α−1α′ ∈ ker(d1)) tells us that to check that φ is a well-
defined function it suffices to show that j(α−1α′) ∈ j (Brunnk(D

2)).
We have

j(α−1α′) = j(α)−1j(α′) = β−1β′,

and by (6), we have β−1β′ ∈ j(Brunnk(D
2)). This completes the proof

that φ is well-defined.
To check that φ is a homomorphism, say β, β′ ∈ Brunnk(S

2). Choos-
ing α, α′ ∈ ker(d1) with j(α) = β and j(α′) = β′, we have φ([β]) = [α],
φ([β′]) = [α′]. Since j(αα′) = ββ′ and d1(αα

′) = 1, we have

φ([β][β′]) = [αα′] = [α][α′] = φ([β])φ([β′]).
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Lastly, we check that φ is injective. Say β ∈ Brunnk(S
2) and φ([β]) =

1; we must check that β ∈ j (Brunnk(D
2)). By definition of φ, there

exists α ∈ ker(d1) with j(α) = β and

φ(β) = [α] = 1 ∈ ker(d1)

(N ∩ ker(d1)) · Brunnk(D2)
;

in other words α ∈ (N ∩ ker(d1)) · Brunnk(D
2). So there exist n ∈

N ∩ ker(d1) and b ∈ Brunnk(D
2) such that α = nb, and now

β = j(α) = j(nb) = j(n)j(b) = j(b) ∈ j
(
Brunnk(D

2)
)
.

2

As a result of Lemma 1.1, we have a natural action of the symmetric
group Σ{2,...,k} on ker(d1), obtained by permuting the generators p1,l,
l = 2, . . . , k. In the remainder of this section, we will study this action.

Lemma 2.5. Assume that k > 4. Then the subgroup

N ∩ ker(d1) C ker(d1)

is invariant under the action of the cyclic subgroup

Z/(k − 1)Z ∼= 〈(2 3 . . . k)〉 6 Σ{2,...,k}.

Proof. Recall from Section 1 that we have a diagram of groups

1 // π1(D
2 \ (k − 1))

f //

q

��

Pk(D
2)

d1 //

j

��

Pk−1(D
2)) //

j

��

1

1 // π1(S
2 \ (k − 1))

g // Pk(S
2)

d1 // Pk−1(S
2) // 1

with exact rows, and q is surjective with kernel the normal subgroup
generated by γ2γ3 . . . γk. This subgroup is preserved by the permutation
σ = (2 3 . . . k), since γ2 . . . γk is conjugate to γ3 . . . γkγ2. Hence the
action of Z/(k − 1)Z on π1(D

2 \ (k − 1)) descends to an action on
π1(S

2 \ (k − 1)), making q a map of Z/(k − 1)Z–modules.
Now, say b ∈ N∩ker(d1). We must show that σ ·b ∈ N∩ker(d1), and

since σ acts on ker(d1), we just need to check that σ · b ∈ N = ker(j).
Since b ∈ ker(d1), we have b = f(γ) for some γ ∈ π1(D

2 \ (k − 1)).
Now,

gq(γ) = jf(γ) = j(b) = 1,

and injectivity of g implies that q(γ) = 1, so

q(σ · γ) = σ · q(γ) = σ · 1 = 1.
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Finally,

j(σ · b) = j(σ · f(γ)) = jf(σ · γ) = gq(σ · γ) = g(1) = 1.

�

Proposition 2.6. For k > 4, there is an action of Z/(k − 1)Z on

ker(d1)

(N ∩ ker(d1)) · Brunnk(D2)
,

and this action leaves the image of φ invariant.

Proof. By Lemma 2.5, the subgroup N ∩ ker(d1) is invariant under the
action of Z/(k − 1)Z on ker(d1), and the same is true of the subgroup
Brunnk(D

2) by Lemma 1.6. Since the action is through homomor-
phisms, the product of these two invariant subgroups is again invariant,
and the action descends to an action on the quotient group. It remains
to check that this action leaves the image of φ invariant.

Say σ ∈ Z/(k − 1)Z, and let β ∈ Brunnk(S
2) be given. We need to

analyze σ · φ([β]). By construction of φ, there exists α ∈ ker(d1) such
that j(α) = β and φ([β]) = [α]. To show that σ · φ([β]) lies in Im(φ),
it will suffice to check that j(σ · α) ∈ Brunnk(S

2): indeed, if this is
the case, then letting β′ = j(σ · α) we have φ([β′]) = [σ · α] (note that
σ · α ∈ ker(d1) by definition of the action) and now

σ · φ([β]) = [σ · α] = φ([β′]) ∈ Im(φ).

By Proposition 1.5, to show that j(σ ·α) ∈ Brunnk(S
2) it will suffice

to show that

j(σ · α) ∈
k⋂
l=2

g
(
〈〈γl〉〉

)
.

Since α ∈ ker(d1), we may write α = f(α̃) for some α̃ ∈ π1(D
2\(k−1)).

Now, g ◦ q(α̃) = β ∈ Brunnk(S
2), so applying Proposition 1.5 again,

we have

g ◦ q(α̃) ∈
k⋂
l=2

g
(
〈〈γl〉〉

)
,

and injectivity of g implies that in fact

(7) q(α̃) ∈
k⋂
l=2

〈〈γl〉〉.

By definition, σ(〈〈γl〉〉) ⊂ 〈〈γσ(l)〉 for each l, so now

σ · (q(α̃)) ∈
k⋂
l=2

〈〈γσ(l)〉〉 =
k⋂
l=2

〈〈γl〉〉.
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Finally,

j(σ · α) = j(σ · f(α̃)) = j ◦ f(σ · α̃) = g ◦ q(σ · α̃) = g(σ · q(α̃))

∈ g

(
k⋂
l=2

〈〈γl〉〉

)
=

k⋂
l=2

g
(
〈〈γl〉〉

)
.

�

We now have an action of Z/(k − 1)Z on πk−1S
2 (k > 5). In fact,

the whole argument could be repeated using dj instead of d1 (j =
2, 3, . . . , k) so in fact we obtain an action of the k–fold free product of
Z/(k − 1)Z on πk−1(S

2).

Question 2.7. Is this action ever non-trivial? Note that when k−1 is
even, we have the possibility that this action factors through the Z/2Z–
action given by inversion in the abelian group πk−1(S

2). Based on
the orders of the groups πk−1(S

2) (as listed on Wikipedia), the only
k − 1 6 21 for which more interesting actions are possible are k − 1 =
6, 10, 12, 14, 18, 20, 21. When k − 1 = 6, 10, 18, all possible actions are
inversion on some direct factors and trivial on others. For k − 1 =
12, 14, 20 there is the possibility of an action permuting Z/2 factors;
for k − 1 = 12 this is the only possibility and for k = 14, 20 there may
be more complicated possible actions (the automorphism group in both
cases contains Aut(Z/2Z×Z/2Z×Z/4Z), which has order 3·26). When
k−1 = 21, again the automorphism group contains Aut(Z/2Z×Z/2Z×
Z/4Z), meaning that there is an automorphism of order 3 (giving a
non-trivial action of Z/21Z).
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