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Abstract. We extend Carlsson’s deformation K-theory to spaces equipped

with an action by a discrete monoid, and show that this theory is homotopy

invariant under (strong) equivariant homotopy equivalence and under taking
products with free monoids. These properties follow from simple arguments

analagous to the homotopy invariance of Weibel’s homotopy K-theory [6].

1. Introduction

Deformation K-theory was originally defined by Carlsson [1] for a discrete
group G. In this context, Kdef (G) is a connective Ω-spectrum, contravariantly
functorial in G, built out of continuous families (deformations) of complex (uni-
tary) representations. Although the bundle homotopy theorem guarantees that
there are no non-trivial deformations of vector bundles, the action of a monoid
on a bundle can be deformed non-trivially (when the base space is a point we
are just considering deformations of representations). Given a space X together
with an action of the monoid M on X, we will build a spectrum Kdef (X,M) out
of continuous families of equivariant vector bundles over X (see Definition 2.3).

The present note explains two invariance properties of this functor. First,
if (X,M) and (Y,N) are (strongly) equivariantly homotopy equivalent (Defi-
nition 3.4), then Kdef (X,M) ' Kdef (Y,N) (Corollary 3.5). Next, if F is a
free (abelian or non-abelian) monoid then given any space with monoid action
(X,M), the projection maps (X,M × F ) → (X,M) and (X,M ∗ F ) → (X,M)
induce an equivalences on deformation K-theory (Corollary 3.6). (Here F acts
trivially.) These results follow from a general fact about “homotopic” functors
between categories of equivariant bundles.

In future work, ring and algebra structures will be considered in this context,
using the recent results of Elmendorf and Mandell [2]
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2. Definitions

We will consider topological spaces X equipped with an action by a discrete
monoid M , and we will assume throughout that the identity e ∈M acts trivially.
A morphism (X,M) → (Y,N) between spaces with monoid actions consists of a
homomorphism (again preserving the identity) φ : M → N and a map f : X → Y

equivariant with respect to φ.

Definition 2.1. Let (X,M) be a space with monoid action. The category of
equivariant vector bundles over (X,M) is the category V ect(X,M) with objects
(E, p, α) where E is a (complex) vector bundle over X with projection p : E →
X, and α is a linear action of M on E making p equivariant. Morphisms in
V ect(X,M) are bundle maps (covering idX) which are equivariant on the total
spaces.

The category V ectn(X,M) is defined to be V ect(X ×∆n,M) where ∆n is the
standard topological n-simplex, acted on trivially by M .

Remark 2.2. Although the category of spaces with monoid action allows mor-
phisms (X,M) → (X,M) which are not the identity on M , in the category
V ect(X,M), morphisms E → E′ are always equivariant with respect to the iden-
tity map M →M .

Note that the categories V ectn(X,M) form a lax simplicial category, which
we denote V ect.(X,M). The structure maps are the functors induced by pull-
back along the standard face and degeneracy maps in the cosimplicial space ∆·,
and satisfy the simplicial identities only up to coherent natural transformations.
Each category V ectn(X,M) admits direct sums (the direct sum of two equivariant
bundles is the Whitney sum of the bundles acted on via the block sum of the
action maps) and we in fact have a (lax) simplicial symmetric monoidal category.
In order to define deformation K-theory, one must replace this lax functor with a
strict functor. This may be done by the general machinery of Kleisli rectification
(see [5]), or more concretely by replacing V ect(X,M) with a subcategory V ect′

which is equivalent and strictly functorial.
We define V ect′(X,M) to be the (small) full subcategory of the (large) category

of all equivariant complex vector bundles E on X consisting of those E whose
total space is, as a set, X × Cn for some n. (This does not mean we are only
considering trivial bundles; the topology on this set need not be the product
topology.) We also assume that the projection map E → X is the natural map
X × Cn → X, and that the vector space structure on the fibres is the normal
vector space structure on Cn. (Such a bundle is completely determined by a
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topology T ⊂ P(X × Cn) satisfying various hypotheses, such as local triviality.)
Every vector bundle is isomorphic to such a bundle, by transport of structure
along some fibrewise-linear set-map.

Within this subcategory we can define a functorial pull-back map. Given
(f, φ) : (X,M) → (Y,N) and an equivariant bundle E = (Y × Cn, T ) over Y
(here T is the topology) we set f∗E = (X×Cn, f∗T ) where a subset U is in f∗T
if and only if its image in the topological pull-back X ×Y (Y × Cn) (under the
map sending (x, v) to (x, f(x), v)) is open in the product topology. (The action
of M is defined in the obvious manner.) Once easily checks that this is functorial;
the main observation is that if we have a second map (g, ψ) : (Z,P ) → (X,M)
then the natural homeomorphism from g∗f∗E = (Z×Cn, g∗f∗T ) to (f ◦ g)∗E =
(Z×Cn, (f ◦g)∗T ) (coming from the universal property of pull-backs) is actually
the identity as a set-map, and hence the two topologies coincide.

Note that Kleisli rectification replaces a category by a homotopy equivalent
category, so by a result of Thomason [5] the two possible notions of deformation
K-theory will coincide up to homotopy. From now on we will assume our functor
V ect is a strict functor to symmetric monoidal categories.

Definition 2.3. The deformation K-theory of (X,M), denoted Kdef (X,M),
is defined to be the total spectrum of the simplicial Ω-spectrum associated to the
simplicial symmetric monoidal category V ect.(X,M). Note that Kdef (X,M) is
a connective Ω-spectrum, contravariantly functorial in (X,M).

3. Homotopic bundle functors

The desired invariance results will be corollaries of a general result regarding
functors between categories of equivariant bundles.

Definition 3.1. Let (X,M) and (Y,N) be spaces with monoid action. An (ad-
ditive) bundle functor from (Y,N) to (X,M) is a simplicial functor

F : V ect.(Y,N) → V ect.(X,M)

which is level-wise additive. We call two bundle functors F,G : V ect.(Y,N) →
V ect.(X,M) homotopic if there is a bundle functor H : V ect.(Y,N) → V ect.(X×
I,M) (called a homotopy of bundle functors) which restricts to F and G (respec-
tively) under the inclusions X × 0 ↪→ X × I and X × 1 ↪→ X × I. (Here I is the
unit interval, acted on trivially by M .)

Proposition 3.2. Homotopic bundle functors induce homotopic maps on de-
formation K-theory spectra.
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Proof. Consider the diagram of simplicial categories

V ect.(Y,N) // V ect.(X × I,M)
0 //

1
// V ect.(X,M) .

It will suffice to show that the functors denoted by 0 and 1, which are induced
by the obvious restriction maps, are simplicially homotopic as functors between
simplicial categories (in the sense of [4, p. 12]). In fact, the inclusion maps

(X ×∆·,M)
0 //

1
// (X × I ×∆·;M) .

inducing these functors are cosimplicially homotopic: the standard triangulation
maps φi : ∆n+1 → I ×∆n (given, for example, in [3, p. 112]) satisfy the duals of
the identities from [4] (this straightforward computation is left to the reader). 2

Remark 3.3. The proof of Proposition 3.2 is similar to Weibel’s proof that
homotopy K-theory is a homotopy invariant functor on the category of rings [6].
It is not clear how to write down a cosimplicial homotopy between the map

X × I ×∆· → X × I ×∆·

sending t ∈ I to 0 and the identity map. This would provide an alternate proof
that the above maps 0 and 1 are homotopic, since they are each sections of the
map t 7→ 0. (Weibel’s proof gives a simplicial homotopy between the analogous
maps of simplicial rings).

We now explain the two invariance results which follow from Proposition 3.2.

Definition 3.4. Let (X,M) and (Y,N) be spaces with monoid actions. A map
(f, φ) : (X,M) → (Y,N) is a strong equivariant homotopy equivalence if there
exists a map (g, ψ) : (Y,N) → (X,M) together with equivariant homotopies
H : (X × I,M) → (X,M) from gf to idX and H ′ : (Y × I,N) → (Y,N) from
fg to idY . (Here the actions of M and N on I are trivial).

Since pull-back along an equivariant homotopy is a homotopy of bundle func-
tors, we have:

Corollary 3.5. If H : (X × I,M) → (Y,N) is an equivariant homotopy (here
M acts trivially on I) then the induced maps on deformation K-theory

Kdef (H0),Kdef (H1) : Kdef (Y,N) → Kdef (X,M)

are homotopic. Hence a strong equivariant homotopy equivalence f : (X,M) →
(Y,N) induces a weak equivalence on deformation K-theory.

Next we discuss the effect in deformation K-theory of trivial actions by free
monoids.
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Corollary 3.6. Let Z+ denote the monoid of non-negative integers, i.e. the free
monoid on one generator. Let M be any monoid, and let q : M×Z+ →M denote
the projection. For any space with monoid action (X,M), the projection map
(Idx, q) : (X,M×(Zn

+)) → (X,M) induces a weak equivalence on deformation K-
theory, with inverse induced by the inclusion map i : (X,M) → (X,M × (Z+)n).
Here (Z+)n acts trivially on X.

Proof. By induction it suffices to consider the case n = 1. Note that qi =
id(X,M) and hence the induced bundle functor i∗q∗ is the identity. Hence it will
suffice to give a homotopy H between the bundle functors q∗i∗ and id(X,M×Z+).

First we define H on objects. Let α : M →Map(X,X) denote the action, and
say (E, p) is an equivariant vector bundle over (X×∆n,M×Z+), with action α̃ :
M×Z+ → End(E). We need to define a bundle Hn(E) ∈ V ectn(X×I,M×Z+)
connecting (E, p) to q∗i∗(E, p). As a vector bundle we simply take H(E) = E×I
with the obvious projection onto X × I ×∆n. We need to define an action β of
M × Z+ on E × I.

We will write Z+ additively, with generator 1 ∈ Z+, and we will write M

multiplicatively with identity e ∈M . To give a map

β : M × Z+ −→ End(E × I)

we simply need to give a map φ : M −→ End(E × I) and an element A ∈
End(E × I) such that φ(m)A = Aφ(m) for all m ∈M . We define

φ(m) = α̃(m, 0)× IdI

and
A = tα̃(e, 1)× IdI + (1− t)IdE×I ;

note that End(E × I) is a vector space so this expression makes sense. The fact
that φ(m) commutes with A for each m ∈M follows immediately from linearity
of φ(m), together with the fact that α̃(m, 0) commutes with α̃(e, 1). Hence we
obtain a well-defined action

β : M × Z+ −→ End(E × I),

which clearly makes p equivariant.
To define the functor Hn on morphisms, let E

f−→ E′ be a morphism in
V ectn(X,M ×Z+) and set Hn(f) = f × Id : E× I → E′× I. It is easily checked
that this map is equivariant with respect to the above actions on Hn(E) = E× I
and Hn(E′) = E′ × I.

We now have a series of functors Hn : V ectn(X,M×Z+) → V ectn(X×I,M×
Z+), which are easily seen to be simplicial and additive. The restrictions at time
0 and 1 are the functors Id and q∗i∗ (respectively), so the corollary now follows
from Proposition 3.2. 2
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Remark 3.7. In order to make the functors Hn in the proof of Corollary 3.6
actually simplicial (when using the categories V ect′(X,M) discussed above), we
need to be careful about the definition of the bundle E × I (corresponding to a
bundle E → Z). If we are thinking of a bundle as a topology on the set X ×Cn,
then we can define E × I as simply the product topology on X × I × Cn. It is
easy to check that with this convention the Hn are simplicial (one sees that for
any bundle E → X ×∆n, the natural homeomorphism(

(idX × δi)∗E
)
× I −→ (idX × δi × idI)∗(E × I)

is actually the identity as a set-map from X ×∆n−1 × I × Cn to itself.

The following result is proved by the same argument as in the proof of Corol-
lary 3.6.

Corollary 3.8. The following projection maps all induce weak equivalences on
deformation K-theory, with inverses given by the obvious inclusion maps (here
Fn is the free non-abelian monoid of n generators and ∗ denotes the free product
of monoids):

• (X,M × Fn) → (X,M),
• (X,M ∗ Fn) → (X,M),
• (X,M ∗ Zn

+) → (X,M).
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