To derive the LES for good pains $A C X$, weill First neal to understand the relative homology groups

$$
H_{k}(X, \bar{A})
$$

Def: For any spaces $A \subset X, C_{*}(X, A)$ is the chain uplx

$$
C_{n}(x, A):=\frac{C_{n} x}{C_{n} A}
$$

w/ bony mop indeed by the universal prop. of the quotient map

$$
C_{n} x \rightarrow C_{n} x / C_{n} A
$$

Note: $\partial_{\text {rel }}^{2}=0 \quad b / c \quad \partial_{\text {rel }}^{2}\left([x]+C_{n} A\right)=\partial_{r e l}\left([\partial x]+C_{n-1} A\right)$

$$
=\left[\partial^{2} x\right]+C_{n-1} A=0
$$

More generally: If $\left(C_{n}, \partial_{C}\right) \stackrel{\iota}{\hookrightarrow}\left(D_{t}, \partial_{D}\right)$ is an inclusion of chain coles, i.c. i is a chain map \& $C_{n} \dot{i}_{n}$ is $|-| \forall n$, then D_{n} / c_{n} is a chain colo w/ differential indued by ∂_{c} as above. Note: The quotient maps $D_{n} \xrightarrow{q} D_{n} / C_{n}$ define a chain map.

Theorem: If $C \stackrel{i}{\longrightarrow} D \xrightarrow{q} C$ is u SES of Chain calxes (1.e. is an inclusion \& q is the quotient mop) then \exists aLbs in homology of the form

$$
\xrightarrow{q_{\perp}} H_{n+1}(D / c) \xrightarrow{\partial} H_{n} C \xrightarrow{i_{\star}} H_{n} D \xrightarrow{q_{n}} H_{n}(D / C) \xrightarrow{\partial} H_{n-1}(C) \xrightarrow{i_{\star}} \ldots
$$

Moreover, a chain map $D \xrightarrow{f} D^{\prime} w / f\left(C l \subset C^{\prime}\right.$ induces a comm. diag. of LESs;
Note: Sometimes $H_{n}(D / C)$ is written $H_{n}(D, C)$

Pf(sketch): Each $x \in H_{n}(D / C)$ is rep'd by a class $\delta \in D_{n} w /$ $d(\delta) \in C_{n-1}$. We define $\partial(x)=[d(\delta)] \in H_{n-1} C$. There are many things to check:

- Note that $d^{2} \delta=0 \Rightarrow d(\delta)$ represents a cycle in D / C, so $[d \delta] \in H_{n-1} C$.
- If $x=\left[\delta^{\prime}\right]$ for some other $\delta^{\prime} \in D_{n}$, then $\delta-\delta^{\prime}$ is a bdry in D / C, ie. $\delta-\delta^{\prime}=d\left(\delta^{\prime \prime}\right)+c$ w/ $\delta^{\prime \prime} \in D_{n+1}, c \in C_{n}$. Now

$$
d\left(\delta-\delta^{\prime}\right)=d^{2} \delta^{\prime \prime}+d c=d c \text {, a bdry in } C \text {. }
$$

so $[d \delta]=\left[d \delta^{\prime}\right]$ in $H_{n-1} C$

- δ is a homom. bic if $x=[\delta], y=\left[\delta^{\prime}\right]$ then $x+y=\left[\delta+\delta^{\prime}\right]$

$$
\Rightarrow \partial(x+y)=\left[d\left(\delta+\delta^{\prime}\right)\right]=\left[d \delta+d \delta^{\prime}\right]=[d \delta]+\left[d \delta^{\prime}\right] .
$$

- Exactness of the seq. (see Hatcher).
- Commutativity of $H_{n} C \rightarrow H_{n} D \rightarrow H H_{n} D / c{ }^{\partial} \rightarrow H_{n-1} \mathrm{C}$
is immediate except for the square involving
∂, but there we have $x=[\delta] \Rightarrow \bar{F}_{*}(x)=[f \delta]$

$$
(f \mid c)_{*}(\partial x)=f([d \delta])=\left[f(d \delta \delta]=[d(f \delta)] \stackrel{\downarrow}{=} \partial\left[\bar{f}_{*}(x)\right]\right.
$$

f is a chain map

Excision:
 indues is om's $H_{m}(X-Z, A-Z) \cong H_{n}(X, A)$ for all $n \geq 0$.
Equivalently: If $X=A \cup B$, where $\operatorname{int}(A) \cup \operatorname{int}(B)=X$, then

$$
H_{n}(B, A \cap B) \xrightarrow{\cong} H_{\infty}(X, A)
$$

For $x \geq 0$. [set $B=X-Z$ or $Z=X-B$ to gobble the versions.]
Application (Brouwer, 1910)
The: If $U \subset \mathbb{R}^{n}$ \& $V \subset \mathbb{R}^{m}$ are homeomopti, then $n=m$.
Pf: Stull the local hoondogygs $H_{k}(U, U-\{x\})$ for pto $x \in U$ (and similarly for pts $y \in V$).

We con apply excision to the pain $\left(\mathbb{R}^{n}, \mathbb{R}^{n}-\{x\}\right)$, $w / z=u^{c}$; n te that $\mathbb{R}^{n}-u=\overline{\mathbb{R}^{n}-u} \subset \mathbb{R}^{n}-\{x\}$. We find:

$$
H_{k}\left(\mathbb{R}^{n}, \mathbb{R}^{n}-x\right) \cong H_{k}(u, u-x) .
$$

Now the LES for $\left(\mathbb{R}^{n}, \mathbb{R}^{n}-x\right)$ gives

$$
\theta=H_{k} \mathbb{R}^{n} \rightarrow H_{k}\left(\mathbb{R}^{n}, \mathbb{R}^{n}-x\right) \xrightarrow{\partial} H_{k-1}\left(\mathbb{R}^{n}-x\right) \rightarrow H_{k-1} \mathbb{R}^{n}=0
$$

So ∂ is anisom.

$$
\begin{array}{r}
\text { isom. }\left(\mathbb{R}^{n}, \mathbb{R}^{n}-x\right) \cong H_{l}\left(\mathbb{R}^{n}-x\right) \cong H_{k-1} S^{n-1} \cong\left\{\begin{array}{l}
\mathbb{Z}, k=n, 0 \\
0, \text { else }
\end{array}\right. \\
\mathbb{R}^{n}-x^{n} \text { unit place around } x .
\end{array}
$$

Now, a homeom $f: l \xrightarrow{\cong} V$ would induce u homeom.

$$
U-x \xrightarrow{\cong} V-f(x)
$$

and hence an som. $H_{k}(U, U-x) \stackrel{\cong}{\cong} H_{k}(V, V-x)$
From our computation of these gro, we see that $n=m$ (since n is the only non. geo dim'n where $H_{k}(4,4-x) \neq 0$, and m is the only non geo dim'n where $H_{k}(V, V-x) \neq 0$.

The LES of a goad pain: For computations, the most important application of excision is: $\begin{aligned} & A \Sigma X, A \neq \phi \text {, one } \\ & A<V E X=4, A\end{aligned}$
Prop 2.22: For good pairs (X, A), the quotient map $(X, A) \xrightarrow{q}(X / A, A / A)$ induces ism's $1 .: H_{n}(X, A) \stackrel{\cong}{\rightrightarrows} H_{n}(X / A, A / A) \cong \tilde{H}_{n}(X / A)$ for all $n \geq 0$ $A / A=$ point, so this follows from the LES of the pair.

Lemma (The S-Lemmu)
Say $A \rightarrow B \rightarrow C \rightarrow i) \rightarrow E$ is commutative and both rows are exact.

In fact, to γ is onto so long as $\beta \&$ dare onto \& ε is $|-|$, and γ is H so long as $\beta \& \delta$ are H and α is onto.
Pf: By a "diagram Chase". See Wikipedia.
Ex: If $(X, A) \rightarrow(Y, B)$ is a map of pains \& $X \rightarrow Y, A \rightarrow B$ are holy equiv.s, then $H_{n}(x, A) \rightarrow H_{n}(Y, B)$ is an ism $\forall n$. Indeed, we have a comm. diagram

$$
\begin{aligned}
& H_{1} A \rightarrow H_{n} X \rightarrow H_{n}(X, A) \rightarrow H_{n-1} A \rightarrow H_{n-1} X \\
& H_{n} B \rightarrow H_{n} Y \rightarrow H_{n}(Y, B) \rightarrow H_{n-1} A \in H_{n-1}=\text { Lemme applies. }
\end{aligned}
$$

Pfor2.22: Analyze $H_{n}(X, A) \xrightarrow{\stackrel{ }{\cong}} H_{n}(X, V) \stackrel{\uparrow}{\cong} H_{n}(X-A, V-A)$

$$
\text { By 5-lemina applied } 100
$$

$$
\begin{aligned}
& \downarrow q_{0} \quad \downarrow q_{\infty} \text { excision } \downarrow q_{1} \\
& H_{n}(X / A, A / A) \cong H_{n}(X / A, V / A) \stackrel{\cong}{\rightrightarrows} H_{n}(X / A-A / A, V / A-A / A) \\
& V / A^{n} s A / A \\
& \begin{array}{l}
\text { so 5-lemmapplies } \\
\text { again }
\end{array} \\
& \text { again }
\end{aligned}
$$

Proof of Excision:
Def: $C_{n}(A+B) \subset C_{n}(X)$ is the subgp genii by $C_{n}(A) \& C_{n}(B)$. Note that $C .(A+B)$ is a sub-chain cplx of $C_{n}(x), b / c$ ∂ maps $C .(A) \& C .(B)$ into themselves.

Similarly, we can define $C_{n}(A+B, A)=C_{n}(A+B) / C_{n}(A)$. This gives a sub-chain coly of $C_{n}(X, A)$. In fact,

$$
C_{n}(B, A \cap B) \stackrel{\cong}{\Longrightarrow} C_{n}(A+B, A)
$$

b / c both are free action $\omega /$ basis $\left\{\sigma: \Delta^{n} \rightarrow B: \operatorname{Im}(\sigma) \notin A\right\}$.
The proof of excision is based on the following lemma:
Lemma: If $X=A \cup B$ as above, then

$$
C_{n}(A+B, A) \rightarrow C_{n}(x, A)
$$

induces on ism. on homology.
Excision follows bic $\Rightarrow H_{n}(B, A \cap B) \cong H_{n}(A+B, A)$. (Note that (x) is a chain mop, since it's indued by the in carrion $C_{n} B \hookrightarrow C_{n}(A+B)$. Prop 2.1 in Hatcher is a more general version of the Lemma. with $X=A \cup B$ replaced by $X=\bigcup_{i \in I} u_{i}$ where $\bigcup_{i \in I} \operatorname{int}^{\prime}\left(u_{i}\right)=X$.

The basicider behind the Lemma is that any chain $\sum x_{i} \sigma_{i}$ in $C_{n}(x)$ an be "cut up", or subdivided, into pieces that lie entirely in A or B :

X
Each red simplex lies entirely on one side of the decomposition.

Q: If we cut each edge of z in half (subdivide) why is the resulting cycle in the same homology class?

Compare $e_{1} \&$ its subdivision:

orientation rule: all edger point a why from barycenter b
"Cone off" $e_{1} \quad \sigma$ is the map to create a
triangle $b\left(e_{1}\right)=\sigma: x_{0}$

Now $\partial \sigma=\left[x_{0}, x_{1}\right]-\left[b, x_{1}\right]+\left[b, x_{0}\right]$
So $e_{1}=\left[x_{0}, x_{1}\right] \equiv\left[b, x_{1}\right]-\left[b, x_{0}\right] \quad\left(\bmod B_{1}(x)\right)$.
\& we extend linearly.)
Subdividing each edge of our loop gives a cycle in $C_{1}(A+B)$ that is "humdogous" to $e_{1}+e_{2}+e_{3}+e_{4}$ (is. represents the same class in $H_{1} X$).

Pf of Lemma: Weill start by defining a chain map
$S: C_{n} X \rightarrow C_{n} X$ sending σ to its "subdivision", and will construct a chain hippy $T: C_{*} x \rightarrow C_{++1} X$ with

$$
T \partial+\partial T=I d-S
$$

(so T is ahtpy blu S \& Id).
S is defined inductuely using the cone operators

$$
\begin{gathered}
c_{b}: C_{k} \Delta^{n} \rightarrow C_{k+1} \Delta^{n} \\
\sigma: \Delta^{k} \rightarrow \Delta^{n}
\end{gathered}>c_{b}(\sigma)=
$$

where $b \in \Delta^{n}$ is any pt, and $c_{b}(\sigma): \Delta^{k+1} \rightarrow \Delta^{n}$ is defined by

$$
c_{b}(\sigma)\left(\sum_{i=0}^{k+1} \lambda_{i} e_{i}\right)=\lambda_{0} b+\bar{\lambda} \sigma\left(\sum_{i=1}^{k+1}\left(\frac{\lambda_{i}}{\bar{\lambda}}\right) e_{i}\right),
$$ where $\bar{\lambda}=\sum_{i=1}^{k+1} \lambda_{i}$.

Note:
$\overline{F o r} 1 \leq i=k+1,0 \leq \frac{\lambda_{i}}{\bar{\lambda}} \leq 1$ and $\sum_{i=0}^{k+1} \frac{\lambda_{i}}{\bar{\lambda}}=\frac{\bar{\lambda}}{\bar{\lambda}}=1$, so $\sum_{i=1}^{k+1}\left(\frac{\lambda_{i}}{\bar{\lambda}}\right) e_{i} \in \Delta^{k+1}$ and moreover, we see that $\lambda_{0} b+\bar{\lambda} \sigma\left(\sum_{i=1}^{k}\left(\frac{\lambda_{i}}{\lambda}\right) e_{i}\right) \in \Delta^{n}$ b/c $\lambda_{0}+\bar{\lambda}=1$.

Picture:

Def: $S^{\Delta}: C_{k} \Delta^{n} \longrightarrow C_{k} \Delta^{n}$ is defined inductively:

$$
\begin{aligned}
& \text { - For } k=0, S^{\Delta}(\sigma)=\sigma \\
& \text { For } k>0, \\
& \qquad S^{\Delta}(\sigma)=C_{b(\sigma)}\left(S^{\Delta}(\partial \sigma)\right) \text {, where } b(\sigma)=\sigma\left(\frac{1}{n+1}, \cdots, \frac{1}{n+1}\right) \text {. }
\end{aligned}
$$

Note: The formulas inductively keep track of the signs on the 6 simplice making up $S^{\Delta}(\sigma)$, along with the exact parametrization of these simplices as maps $\Delta^{2} \rightarrow \Delta^{n}$.

Defin: For any space X, we set $S: C_{n} X \rightarrow C_{n} X$ to be $S(v)=\sigma_{\#}(\underbrace{S^{\Delta}\left(I_{d} \Delta^{n}\right.}_{\text {in } C_{n} \Delta^{n}})$.

Here $\sigma_{\#}$ is the chain map $C_{n}\left(\Delta^{n}\right) \rightarrow C_{n}(x)$ induced by $\sigma: \Delta^{n} \rightarrow X$.

Claim: S is a chain map: $\partial S=S \partial$.
Note: Can see this in pictures above for din's 081 The pf requires several steps.
Subclaim 1: $\partial c_{b}+c_{b} \partial=I d$
Subclaim 2: S^{Δ} is a chain map.

Pf of SCI: Picture $\hat{S}_{b}^{\circ} c_{b}(\sigma) \quad \partial c_{b} \sigma=\sigma \pm c_{b}(\partial \sigma)$

Now $c_{b}(\sigma) \circ \delta^{0}=\sigma, b / c$
$E=\sum t_{i}=1$

$$
\begin{aligned}
C_{b}(\sigma) \circ \delta^{0}\left(t_{0}, \cdots, t_{n}\right)=c_{b}(\sigma)\left(0, t_{0}, \cdots, t_{n}\right) & =0 \cdot b+\sigma\left(\sum \frac{t_{i}}{\bar{t}} e_{i}\right) \\
& =\sigma\left(t_{0}, \cdots, t_{n}\right) .
\end{aligned}
$$

We claim: $\sum_{i=0}^{n}(-1)^{i}\left(C_{b} \sigma\right) \circ \delta^{i+1}=C_{b}(\partial \sigma)$
Indeed,

$$
\begin{aligned}
& \text { indeed, } \\
& \left.C_{b}(\partial \sigma)=C_{b}\left(\sum_{i=0}^{n}(-1)^{i} \sigma \circ \delta^{i}\right)=\sum_{i=0}^{n}(-1)^{i} c_{b}\left(\sigma_{0} \delta^{i}\right)\right)
\end{aligned}
$$

So it's enough to check that $c_{b}\left(\sigma_{0} \delta^{i}\right)=c_{b}(\sigma) \circ \delta^{i+1}$
We have $c_{b}\left(\sigma . \delta^{i}\right)\left(t_{0}, \cdots, t_{n}\right)=t_{0} b+v_{0} \delta^{i}\left(t_{1 / \bar{t}}, \ldots, t_{n / \bar{t}}\right)$
and $c_{b}(\sigma) \circ \delta^{i^{+1}}\left(t_{0}, \cdots, t_{n}\right)=c_{b}(\sigma)\left(t_{0}, \cdots, 0, \cdots, t_{n}\right)$

$$
=t_{0} b+\sigma\left(\frac{t_{1}}{\bar{t}}, \cdots, 0, \cdots, t_{n} / \bar{t}\right)
$$

(in each case, $\bar{t}=t_{1}+\cdots+t_{n}$).
Pf of $S\left(2\right.$: By induction on $n=\operatorname{dim}(\sigma): \quad S^{\Delta}: C_{0} \Delta^{n} \rightarrow C_{0} \Delta^{n}$ is the identity map, so there is nothing to check when $n=0$.

$$
\begin{aligned}
& \frac{n \geq 1}{\partial S^{\Delta} \sigma=\partial C_{b(\sigma)}\left(S^{\Delta}(\partial \sigma)\right)} \stackrel{\downarrow}{=} S^{\Delta}\left(\partial \sigma C_{y}(\tau)=\tau-c_{y}(\partial \tau)\right. \\
&=S_{b / \sigma)}(\partial \sigma) . \quad \underbrace{\partial S^{\Delta}(\partial \sigma)}) \\
& \text { Hypoth. } S^{\Delta}(\partial \partial \sigma)=0
\end{aligned}
$$

Finally we prove the claim $(\partial S=S \partial)$:

$$
\left.\begin{array}{rl}
\partial S(\sigma)= & \partial v_{\#} S^{\Delta}\left(I d_{\Delta^{n}}\right) \stackrel{\sigma_{\#}}{=} \sigma_{\#}\left(\partial S^{\Delta}\left(I d_{\Delta}\right)\right) \\
& \stackrel{S c 2}{ }=\sigma_{\#}\left(S^{\Delta}\left(\partial I d_{\Delta^{n}}\right)\right)
\end{array}\right)=\sigma_{\#}\left(S^{\Delta}\left(\sum_{i=0}^{n}(-1)^{i} \delta^{i}\right)\right) .
$$

-he other hand,

$$
\begin{aligned}
S \partial)(v) & =S(\partial \sigma)=S\left(\sum_{i=0}^{n}(-1)^{i} \sigma_{0} \delta^{i}\right)=\sum_{i=0}^{n}\left(-11^{i} S\left(\sigma_{0} \delta^{i}\right)\right. \\
& =\sum_{i=0}^{n}(-1)^{i}\left(\sigma \cdot \delta^{i}\right)_{\#}\left(S^{\Delta}\left(I_{d} \Delta^{n-1}\right)\right) \\
& =\sum_{i=0}^{n}(-1)^{i} \sigma_{\#} \cdot\left(\delta^{i}\right)\left(S^{\Delta}\left(I_{d^{n-1}}\right)\right)
\end{aligned}
$$

So it suffices to check that

$$
\left(\delta_{\#}^{i} S^{\Delta}\left(I_{\Delta^{n-1}}\right)=S^{\Delta}\left(\delta^{i}\right)\right.
$$

Fact: $\tau_{\#} S^{\Delta}(\eta)=S^{\Delta}(\tau \circ \eta)$ for all $\eta: \Delta^{k} \rightarrow \Delta^{n-1}$ and all linear maps $\tau: \Delta^{n-1} \rightarrow \Delta^{n}$ (that is, $\tau\left(\sum \lambda_{i} e_{i}\right)$ $\left.=\Sigma \lambda_{i} \tau\left(e_{i}\right)\right)$.
To prove this, we need a similar observation about the cone operator C_{b} :

Exercise: $\tau_{\#} c_{b}(v)=C_{\tau(b)}\left(\tau_{\#} v\right)$ so long as τ (here $v \in C_{*} \Delta^{n}$).

Pf of Fact: For $\operatorname{dim}(\eta)=0$, this is immediate from the defns. We proceed by induction. Assuming the statement in dimin $n-1$, if $\operatorname{dim} \eta=n$ we have

$$
\tau_{\#} S^{\Delta}(\eta)=\tau_{\#} C_{b \eta)}\left(S^{\Delta}(\partial \eta)\right) \overline{\bar{\uparrow}} C_{\tau(b(\eta))}\left(\tau_{\#} S^{\Delta}(\partial \eta)\right)
$$

SD, x_{t} arinem maps by the Exercise

Induction

$$
\underline{\underline{1}} C_{\tau(b(\eta))}\left(\sum_{i=0}^{n}(-1)^{i} \tau_{\#} s^{\Delta}\left(\eta \circ \delta^{i}\right)\right)
$$

Hypothesis,

$$
\stackrel{ }{i s}_{=}^{C_{\tau(b(\eta))}}\left(\sum_{i=0}^{n}(-1)^{i} S^{\Delta}\left(\tau \circ \eta \circ s^{i}\right)\right)
$$

By linearity of τ,

$$
\tau(b(\eta))=\tau\left(\sum_{i=0}^{n} \frac{1}{n+1} \eta\left(e_{i}\right)\right)=\sum_{i=0}^{n} \frac{1}{n+1} \tau 0 \eta\left(e_{i}\right)=b(\tau \circ \eta)
$$

So the above is just

$$
\left.C_{b(\tau \cdot \eta)}\left(S^{\Delta}(\partial \tau \cdot \eta)\right)\right) \text { as desired. }
$$

This completes the proof that S is a chain map.
Next we need.
Claim: There is a chain ht ry $T: C_{n} X \rightarrow C_{n+1} X$ satisfying $\partial T+T \partial=I d-S$.

Hatcher constructs T^{Δ} on $C_{*} \Delta^{n}$ first, by induction and then extends via $T(\sigma)=\sigma_{\#} T^{\Delta}\left(I d_{\Delta^{n}}\right)$, just like the construction of S. The inductive formula for T^{Δ} is $T^{n} C_{0} \Delta^{n} \rightarrow c_{1} s^{n}$

$$
T^{i}(\sigma)=c_{b(\sigma)}(\sigma)-c_{b(\sigma)}\left(T^{d}(\partial \sigma)\right)
$$

The details in the proof of this Claim are similar to what we did to understand ∂S, and are basically formal. (Details below.)

Pictures. $T(;)=$ constant 1 -simplex $4 /$ same image 0 - simplex
Note: $\partial T(\cdot)+T \partial=0=-S(\cdot)$

$$
\text { and } T\left(\partial \sigma^{\prime}\right)=T\left(v_{1}-v_{0}\right)=\psi_{v_{1}}^{v_{1}}-\psi_{v_{0}}^{v_{0}}
$$

See: $\partial T_{\sigma^{\prime}}+T \partial \sigma_{1}=\sigma_{0}-S_{\sigma}$

$$
\begin{aligned}
& =v_{0} \stackrel{b_{\sigma}}{\leftrightarrows} v_{v_{1}}-{ }_{b_{\sigma} \rightarrow \sigma_{v_{1}}}^{v_{1}}+{ }_{v_{0}}^{v_{0}} b_{\sigma}={ }_{v_{0}}^{v_{0} /(11 / 1 / 1 / 1)_{v_{1}}^{b_{1}}}
\end{aligned}
$$

Proof of $\partial T+T \partial=I d-S$: First we check that $\partial T^{\Delta}+T \Delta \partial=I d-S \Delta$, and then the general result follows formally.

To prove $\partial T^{\Delta}+T^{\Delta} \partial=I d-S^{\Delta}$ on $C_{n} \Delta^{m}$, we proceed by induction on $\underline{\underline{n}}$. When $n=0$, we have $\partial T \Delta \sigma^{0}+T \Delta \partial \sigma^{0}=\partial\left(C_{I_{m}\left(\sigma_{0}\right)}\right)+0=0$
constant $1-\operatorname{sim} p l e x$
and Id $\left(\sigma^{0}\right)-S^{\Delta}\left(\sigma^{0}\right)=\sigma^{0}-\sigma^{0}=0$ as well.
Now assume the result for ($n-11$-simplicer and compute $\partial T^{\Delta} \sigma^{n}$ for $\sigma^{n} \in C_{n} \Delta^{m}$:

$$
\begin{gathered}
\partial T^{\Delta} \sigma=\partial c_{b \sigma}(\sigma)-\partial c_{b \sigma}\left(T^{\Delta} \partial \sigma\right)=\left(\sigma-c_{b \sigma}(\partial \sigma)\right)-\left(T^{\Delta} \partial \sigma-c_{b \sigma}\left(\partial T^{\Delta} \partial \sigma\right)\right) \\
\partial c_{b}^{\tau}=\tau-c_{b}(\partial \tau) \text { by subclaim } 1
\end{gathered}
$$

We want to show this equals $\sigma-S_{\sigma}^{\Delta}-T^{\Delta} \partial_{\sigma}$, so it suffice to show
(\$)

$$
C_{b \sigma}(\partial \sigma)-C_{b \sigma}\left(\partial T^{\Delta} \partial \sigma\right)=S^{\Delta} \sigma .
$$

So we compute $\partial T^{\Delta}(\partial \sigma)$:

$$
\partial T^{\Delta}(\partial \sigma)=\partial T^{\Delta}\left(\Sigma(-1)^{i} \sigma \circ \delta^{i}\right)=\Sigma(-1)^{i} \partial\left(T^{\Delta}\left(\tilde{\sigma}^{(n-1) \delta^{i}}\right)\right.
$$

By induction

$$
\begin{aligned}
& \stackrel{\text { induction }}{=} \sum(-1)^{i}\left(\sigma \circ \delta^{i}-S^{\Delta}\left(\sigma \circ \delta^{i}\right)-T^{\Delta} \partial\left(\sigma \circ \delta^{i}\right)\right) \\
& =\partial \sigma-S^{\Delta}(\partial \sigma)-T^{\Delta}(\underbrace{\partial(\partial \sigma)}_{0}) \\
& =\partial \sigma-2 S^{\Delta} \sigma
\end{aligned}
$$

So (x) becomes

$$
C_{b \sigma}\left(\partial_{\sigma}\right)-C_{b \sigma}\left(\partial \sigma-\partial S^{\Delta} \sigma\right)=S^{\Delta} \sigma,
$$

and this is the defin of $S^{s} \sigma$.
For $\sigma \in C_{n} X$, we have:

$$
\begin{aligned}
\partial T \sigma+T \partial v & =\partial \sigma_{\#} T^{\Delta}\left(I d_{\Delta^{n}}\right)+T(\partial \sigma) \\
& =\sigma_{\#} \partial T^{\Delta}\left(I d_{\Delta^{n}}\right)+T(\partial \sigma) \\
& =\sigma_{\#}\left(I d_{\Delta^{n}}-s^{\Delta} I d_{\Delta^{n}}-T^{\Delta}\left(\partial I d_{\Delta^{n}}\right)\right)+T(\partial \sigma) \\
& =\sigma-S \sigma-\sigma_{\#} T^{\Delta}\left(\partial I d_{\Delta^{n}}\right)+T(\partial \sigma)
\end{aligned}
$$

To complete the proof, we need to show that

$$
T(\partial \sigma)=\sigma_{\#} T^{\Delta}\left(\partial I d_{\Delta^{n}}\right) .
$$

We have:

$$
\begin{aligned}
T\left(\partial_{\sigma}\right) & =\sum(-1)^{i} T\left(\sigma \cdot \delta^{i}\right)=\Sigma(-1)^{i}\left(\sigma \cdot \delta^{i}\right)_{\#} T^{\Delta}\left(I d_{\Delta^{n-1}}\right) \\
& =\sigma_{\#}\left(\sum(-1)^{i} \delta_{\#}^{i} T^{\Delta}\left(I \Delta^{n-1}\right)\right)
\end{aligned}
$$

and $\quad \sigma_{\#}\left(T^{\Delta}\left(\partial I_{\Lambda^{n}}\right)\right)=\sigma_{ \pm}\left(T^{\Delta}\left(\Sigma(-1)^{i} \delta^{i}\right)\right.$

$$
=\sigma_{\#}\left(\sum(-1)^{i} T^{\Delta}\left(\delta^{i}\right)\right)
$$

So it suffices to show that if $f: \Delta^{m} \rightarrow \Delta^{l}$ is linear, \& $\omega \in C_{k}\left(\Delta^{m}\right)$, then

$$
f_{\#}\left(T^{\Delta} \omega\right)=T^{\wedge}(f \cdot \omega) . \quad\left[\operatorname{set} f=\delta_{i}^{i}, \omega=I d_{s^{n-1}}\right]
$$

We prove this by induction on k, using the above exercise. For $k=0$, both sides are the constant 1-simplex at the image of fo. Now assume the result for $k-1$.

$$
\begin{aligned}
f_{\#} T^{\Delta}(\omega) & =f_{\text {By ta Exercise }}\left(C_{b \omega}(\omega)-C_{b \omega}\left(T^{\Delta}(\partial \omega)\right)\right. \\
& C_{f(b \omega)}(f \omega)-C_{f(b \omega)}\left(f_{\#} T^{\Delta} \partial \omega\right) \\
T^{\Delta}(f \circ \omega) & =C_{b(f \omega)}(f \omega)-C_{b f \omega}\left(T^{\Delta}(\partial f \omega)\right)
\end{aligned}
$$

Since f is linear, $f(b \omega)=b(f w)$. So it remains only to show

$$
f_{\#} T^{\Delta}(\partial \omega)=T^{\Delta}(\partial f \omega) .
$$

We have: $f_{\#} T^{\Delta}(\partial \omega)=\sum(-1)^{i} f_{\#} T^{\Delta}\left(\omega \circ \delta^{i}\right)=\sum(-1)^{i} T^{\Delta}\left(\right.$ foo of $\left.^{i}\right)$

$$
=T^{\Delta}(\partial(f \cdot \omega))_{\square}
$$

Now we can complete the prof of excision.
We need to show that $C_{n}(A+B, A) \rightarrow C_{n}(X, A)$ induces an isom. on homology. First we prove surjectivity.
Lemma: (Hatcher, p 120) Given $z=\sum \lambda_{i} \sigma_{i} \in C_{n}(x) w / \partial z \in C_{n-1}(A)$, $S^{m}(z) \in C_{n}(A+B)$ for some $m=m(z) \geqslant 0$. \quad E is the Le besgue \# \&
Pf: (Sketch) For coth $i, \sigma_{i}^{-1}(A), \sigma_{i}^{-1}(B) \subset \Delta^{n}$, and hence $\exists \varepsilon>0$ st. each ball of rall ε (in $\left.\Delta^{n}\right)$ maps into either $A \cap B$ under all σ_{i}. Now one check inductively that the diameter of simplicer in the $m^{\text {th }}$ subdivision of Δ^{n} is $\leq(n / n+1)^{m}$, which is $<\varepsilon$ for $m>0$.
Now it suffices to show that $\partial\left(S^{m}(z)\right) \in C_{n-1}(A)$ (so that $S^{m}(z)$ is a cycle in $\left.C_{*}(A+B, A)\right)$ and that $z-S^{m}(z)$ lies in $B_{n}(X)+C_{n}(A)$ iso that $z \& s^{m} z$ give the same homology class in $H_{*}(X, A)=\frac{\left\{z \in C_{n} X \mid \partial z \in C_{n} A\right\}}{B_{n} X+C_{n} A}$.

We have $\partial S^{m}(z)=S^{m}(\partial z) \quad(b / c \quad \partial S=S \partial)$ and $\partial z \in C_{n-1} A$. From the def of S we see that $S\left(C_{*} A\right) \leq C_{*} A$, so $\partial S^{m}(z) \in C_{n-1} A$ as desired.

Next, $z-S^{m}(z)$ is a bdry in $C_{*}(A+B, A)$ bic can write

$$
\begin{aligned}
Z-S^{m} z & =z-S z+\left(S z-S^{2} z\right)+\cdots+\left(S^{m-1} z-S^{m} z\right) \\
& =\sum_{i=0}^{m-1} S^{i}(z-S z)
\end{aligned}
$$

and $z-S z=2 T z-T \partial z \in B_{n} X+C_{n} A$ b/e $\partial z \in C_{n-1} A$, and S^{i} maps $B_{n} X$ to $B_{n} X$ (since S is a chain map) and maps $C_{n} A$ to $C_{n} A$.

Finally, we show $C_{n}(A+B, A) \rightarrow C_{n}(X, A)$ is infective on homology. Say $z \in C_{n}(A+B, A)$ and z represents
$0 \in H_{n}(X, A)$. Then $\partial z \in C_{n} A$ and

$$
z \in B_{n} X+C_{n} A \text {, so we }
$$

can write $z=\partial w+\alpha$ with $w \in C_{n+1}(X), \alpha \in C_{n}(A)$. We want to show that $z \in B_{n}(A+B)+C_{n}(A)$, and it suffices to show that $\partial w=z-\alpha \in B_{n}(A+B)$. Again, consider the telescoping sum

$$
\omega-S^{m} \omega=(\omega-S \omega)+\left(S \omega-S^{2} \omega\right)+\cdots+\left(S^{m-1} \omega+S^{m} \omega\right)
$$

where m is taken large enough that $S^{m}(w) \in C_{n}(A+B)$.
Now

$$
\partial w=\underbrace{\partial S^{m} w}_{\text {in } B_{n}(A+B)}+\left[\left[\sum_{i=0}^{m-1} S^{i}\left(w-S_{w}\right)\right]=\partial S^{m} w+\sum_{i=0}^{m-1} S^{i}\left(\partial\left(w-S_{w}\right)\right)\right.
$$

so it will suffice to show that $\partial\left(w-S_{w}\right) \in B_{n}(A+B)$.
We have

$$
\partial(w-s w)=\partial(\partial T w+T \partial \omega)=\partial T \partial w=\partial T(z-\alpha)
$$

Since $z \in C_{n}(A+B) \& \alpha \in C_{n} A, z-\alpha \in C_{n}(A+B)$ and hence $T(z-\alpha) \in C_{n} A+B$ as well. So

$$
\partial\left(w-s_{w}\right)=\partial T(z-\alpha) \in B_{n}(A+\beta)
$$

as desired. This completes the proof of excision.

The Mayer-Uietoris Sequence:

To derive the $M-U$ seq. for $X=A \cup B(w / \operatorname{int}(A) \cup \operatorname{inn}(B)=x)$ we consider $\quad A_{n} B \stackrel{i i_{i} A}{\stackrel{i}{i} B U_{i B}^{A}} i^{i} x$

$$
C_{n}(A \cap B) \xrightarrow{\left(i_{A^{*}},-i_{B_{4}}\right)} C_{n}(A) \oplus C_{n}(B) \xrightarrow{i_{i}^{A}+i_{i+1}^{B}} C_{n}(A+B)
$$

The $2^{n!}$ map is onto by def'n of $C_{n}(A+B)$, and the first is clearly injective. In fact, the seq. is exact b/c

$$
i_{\#}^{A}+i_{\#}^{B}\left(i_{A} \sigma_{1}-i_{B \#} \sigma\right)=i_{\#} \sigma-i_{\#} \sigma=0 .
$$

Now the LES in H_{s} has the form

$$
\cdots H_{n}(A \cap B) \rightarrow H_{n}(A) \oplus H_{n} B \rightarrow H_{n}(A+B) \xrightarrow{\partial} H_{n-1}\left(A_{n} B\right) \rightarrow \cdots
$$

Claim: The inclusion $C_{*}(A+B) \stackrel{i_{A}}{\hookrightarrow} C_{*}(X)$ induces isom's

$$
H_{n}(A+B) \cong H_{n}(X)
$$

for all $n \geq 0$.
Pf: We have a comm. diagram of SES

$$
\begin{array}{cc}
C_{*} A \rightarrow C_{*}(A+B) & \rightarrow C_{*}(A+B, A) \\
\downarrow= & \downarrow i_{\#} \\
C_{*} A \rightarrow C_{*}(X) \rightarrow C_{*}(X, A)
\end{array}
$$

and the right-mast vertical map induces an ism. on $H_{\text {w }}$ by Prop 2.21. The claim now follows by applying the 5-lemma to the associated diagram of LES's in homology.

In fact, the MV seq. can also be formulated for reduced homology: just use the augmented chain cplxs

for $Z=A \cap B, A, B,{ }^{\prime}$ (the homitgy of this a cemented cpl is ' $\tilde{H}_{+}(z)$) and note that $C_{0} A+B=C_{0} X$ So we con argent $C_{r}(A+B)$ in the same manner.

Note that we still have a SES of augmented colas if the maps in dey -1 are $\mathbb{Z} \underset{1 \mapsto(1,-1)}{\longrightarrow} \mathbb{Z} \mathbb{Z} \rightarrow \underset{(a, b) \rightarrow a+b}{\rightarrow}$.

