Math 697 - Homework 4 Due Wednesday, May 3

Problem 1 (The multiplication on $\mathbb{C}P^{\infty}$): In class we studied the "multiplication" map $\mu : \mathbb{C}P^{\infty} \times \mathbb{C}P^{\infty} \to \mathbb{C}P^{\infty}$ (we defined μ to be a classifying map for the line bundle $\pi_1^*\gamma^1 \otimes \pi_2^*\gamma^1 \to \mathbb{C}P^{\infty} \times \mathbb{C}P^{\infty}$). Prove that μ is a homotopy commutative and has an inverse up to homotopy. That is, show that

$$\mu \circ \tau \simeq \mu$$

where

$$\tau: \mathbb{C}P^{\infty} \times \mathbb{C}P^{\infty} \to \mathbb{C}P^{\infty} \times \mathbb{C}P^{\infty}$$

is the "twist" map $\tau(x,y) = (y,x)$, and show that there is a map $\eta \colon \mathbb{C}P^{\infty} \to \mathbb{C}P^{\infty}$ such that

$$\mu \circ (\eta \times \mathrm{Id}) \circ \Delta \simeq \mu \circ (\mathrm{Id} \times \eta) \circ \Delta \simeq c,$$

where Id is the identity map on $\mathbb{C}P^{\infty}$, $\Delta \colon \mathbb{C}P^{\infty} \to \mathbb{C}P^{\infty} \times \mathbb{C}P^{\infty}$ is the diagonal $x \mapsto (x, x)$, and c is the constant map $\mathbb{C}P^{\infty} \to * \in \mathbb{C}P^{\infty}$ (the choice of * is irrelevant since we're working up to homotopy). (Hint: these are similar to the proof that μ has an identity up to homotopy, which was proven in class. For the inverse, think about dual bundles.)

Remark: The multiplication μ is also homotopy associative, meaning that $\mu \circ (\text{Id} \times \mu) \simeq \mu \circ (\mu \times \text{Id})$, and the proof is similar.

Problem 2 (Determinants and the first Chern class):

Let $E \to B$ be a vector bundle (real or complex). Let $\det(E) \to B$ be the line bundle formed by applying the continuous functor sending an *n*-dimensional vector space V to its top exterior power $\Lambda^n V$ (and sending an isomorphism $V \to W$ to the induced map $\Lambda^n V \to \Lambda^n W$).

a) Consider the case in which $B = U_1 \cup U_2$, and E is trivial over both U_1 and U_2 . Show that if the transition function for E is

$$\phi\colon U_1 \cap U_2 \to \mathrm{GL}(n),$$

then the transition function for det(E) is

$$\det \circ \phi \colon U_1 \cap U_2 \to \mathrm{GL}(1),$$

where det is the usual determinant map.

b) Prove that for any complex vector bundle E (over a paracompact base space), we have $c_1(E) = c_1(\det E)$. (Hint: use the Splitting Principle; that is, begin with the case where E is a direct sum of line bundles. Paracompactness is just needed to ensure that the Splitting Principle applies.) **Problem 3 (Characteristic classes of tensor products):** Given 2dimensional complex vector bundles E and F over a space X, compute the characteristic classes $c_1(E \otimes F)$ and $c_2(E \otimes F)$ in terms of the classes $c_1(E), c_2(E), c_1(F)$, and $c_2(F)$. (Hint: use the Splitting Principle.)

Remark: It's not much harder to compute $c_3(E \otimes F)$ and $c_4(E \otimes F)$, but the formulas get rather large.

2