Math 697 - Homework 4
Due Wednesday, May 3
Problem 1 (The multiplication on $\mathbb{C} P^{\infty}$): In class we studied the "multiplication" map $\mu: \mathbb{C} P^{\infty} \times \mathbb{C} P^{\infty} \rightarrow \mathbb{C} P^{\infty}$ (we defined μ to be a classifying map for the line bundle $\left.\pi_{1}^{*} \gamma^{1} \otimes \pi_{2}^{*} \gamma^{1} \rightarrow \mathbb{C} P^{\infty} \times \mathbb{C} P^{\infty}\right)$. Prove that μ is a homotopy commutative and has an inverse up to homotopy. That is, show that

$$
\mu \circ \tau \simeq \mu
$$

where

$$
\tau: \mathbb{C} P^{\infty} \times \mathbb{C} P^{\infty} \rightarrow \mathbb{C} P^{\infty} \times \mathbb{C} P^{\infty}
$$

is the "twist" map $\tau(x, y)=(y, x)$, and show that there is a map $\eta: \mathbb{C} P^{\infty} \rightarrow \mathbb{C} P^{\infty}$ such that

$$
\mu \circ(\eta \times \mathrm{Id}) \circ \Delta \simeq \mu \circ(\operatorname{Id} \times \eta) \circ \Delta \simeq c
$$

where Id is the identity map on $\mathbb{C} P^{\infty}, \Delta: \mathbb{C} P^{\infty} \rightarrow \mathbb{C} P^{\infty} \times \mathbb{C} P^{\infty}$ is the diagonal $x \mapsto(x, x)$, and c is the constant map $\mathbb{C} P^{\infty} \rightarrow * \in \mathbb{C} P^{\infty}$ (the choice of $*$ is irrelevant since we're working up to homotopy). (Hint: these are similar to the proof that μ has an identity up to homotopy, which was proven in class. For the inverse, think about dual bundles.)

Remark: The multiplication μ is also homotopy associative, meaning that $\mu \circ(\mathrm{Id} \times \mu) \simeq \mu \circ(\mu \times \mathrm{Id})$, and the proof is similar.

Problem 2 (Determinants and the first Chern class):

Let $E \rightarrow B$ be a vector bundle (real or complex). Let $\operatorname{det}(E) \rightarrow B$ be the line bundle formed by applying the continuous functor sending an n-dimensional vector space V to its top exterior power $\Lambda^{n} V$ (and sending an isomorphism $V \rightarrow W$ to the induced map $\left.\Lambda^{n} V \rightarrow \Lambda^{n} W\right)$.
a) Consider the case in which $B=U_{1} \cup U_{2}$, and E is trivial over both U_{1} and U_{2}. Show that if the transition function for E is

$$
\phi: U_{1} \cap U_{2} \rightarrow \operatorname{GL}(n)
$$

then the transition function for $\operatorname{det}(E)$ is

$$
\operatorname{det} \circ \phi: U_{1} \cap U_{2} \rightarrow \mathrm{GL}(1)
$$

where det is the usual determinant map.
b) Prove that for any complex vector bundle E (over a paracompact base space), we have $c_{1}(E)=c_{1}(\operatorname{det} E)$. (Hint: use the Splitting Principle; that is, begin with the case where E is a direct sum of line bundles. Paracompactness is just needed to ensure that the Splitting Principle applies.)

Problem 3 (Characteristic classes of tensor products): Given 2dimensional complex vector bundles E and F over a space X, compute the characteristic classes $c_{1}(E \otimes F)$ and $c_{2}(E \otimes F)$ in terms of the classes $c_{1}(E), c_{2}(E), c_{1}(F)$, and $c_{2}(F)$. (Hint: use the Splitting Principle.)

Remark: It's not much harder to compute $c_{3}(E \otimes F)$ and $c_{4}(E \otimes F)$, but the formulas get rather large.

