Math 697 - Characteristic Classes Homework 3 - Due Wednesday, April 5

General hint: the Whitney Sum Formula is needed for most of these problems.

Problem 1: Stable isomorphisms

a) Two real vector bundles $E \to B$, $F \to B$ are said to be *stably isomorphic* if there exists n such that $E \oplus \epsilon^n \cong F \oplus \epsilon^n$, where $\epsilon^n = B \times \mathbb{R}^n$ is the trivial n-plane bundle over B.

Prove that if E and F are stably isomorphic, then $w_i(E) = w_i(F)$ for each $i = 0, 1, \ldots$ (The analogous result holds in the complex case, with the same proof.)

- b) Prove that $w_i(TS^n) = 0$ for all i, n. (Note: the tangent bundle of S^n is not always trivial! For instance, there is no everywhere-nonzero vector field on S^2 .)
- c) Prove that $w_i(TM^g) = 0$ for all i, g, where M^g is the closed orientable surface of genus g. (Again, the tangent bundle is not trivial.)

Problem 2: The Splitting Principle

a) Prove the following alternate form of the Splitting Principle: For each $n \ge 1$, the classifying map

$$(\operatorname{Gr}_1(\mathbb{C}^{\infty}))^n \xrightarrow{\alpha} \operatorname{Gr}_n(\mathbb{C}^{\infty})$$

for the complex n-plane bundle

$$\gamma_1 \times \cdots \times \gamma_1 \longrightarrow \operatorname{Gr}_1(\mathbb{C}^{\infty}) \times \cdots \times \operatorname{Gr}_1(\mathbb{C}^{\infty})$$

induces an injection on integral cohomology. Here $\gamma_1 \to \operatorname{Gr}_1(\mathbb{C}^{\infty})$ is the tautological line bundle over $\operatorname{Gr}_1(\mathbb{C}^{\infty}) \cong \mathbb{C}P^{\infty}$. (Hint: use the Projective Bundle Theorem.)

b) By the Künneth Theorem, $H^*((Gr_1(\mathbb{C}^{\infty}))^n; \mathbb{Z})$ is the polynomial ring on 2-dimensional the classes $x_i := \pi_i^*(c_1(\gamma_1))$, where π_i is projection to the *i*th factor (recall here that, by definition, $c_1(\gamma_1) \in H^2(\mathbb{C}P^{\infty}; \mathbb{Z})$ is a generator).

Prove that $\alpha^*(c_i(\gamma_n))$ is the *i*th elementary symmetric polynomial in the x_i .

Remark: This problem also shows that the Chern classes of γ_n are never zero, since they pull back to non-zero classes in the polynomial ring $H^*((\operatorname{Gr}_1(\mathbb{C}^{\infty}))^n; \mathbb{Z})$. The same argument shows the Stiefel–Whitney classes of the real universal bundles are non-zero.

In fact, more is true. It's a basic algebraic fact that there are no polynomial relations amongst the elementary symmetric polynomials. This means that the classes $c_i(\gamma_n)$ are algebraically independent in $H^*(\mathrm{Gr}_n(\mathbb{C}^\infty);\mathbb{Z})$. In fact, these classes generate the cohomology ring $H^*(\mathrm{Gr}_n(\mathbb{C}^\infty);\mathbb{Z})$ (see Milnor–Stasheff §14), i.e. this ring is the polynomial algebra on the Chern classes of the universal bundle γ_n . Again, the analogous statements hold in the real case.

Problem 3:

a) Prove that the universal bundle $\gamma_n \to \operatorname{Gr}_n(\mathbb{R}^{\infty})$ is not orientable, but

$$\gamma_n \oplus \gamma_n \to \operatorname{Gr}_n(\mathbb{R}^\infty)$$

is orientable.

b) Prove that $w_{2n}(\gamma_n \oplus \gamma_n) \neq 0$. (Hint: Problem 2 is helpful here.)

Problem 4: Dual Bundles

In this problem, \mathbb{F} will denote either the field \mathbb{R} of real number, or the field \mathbb{C} of complex numbers. Given a vector bundle $E \to B$ with fiber \mathbb{F}^n , the dual bundle $E^* = \operatorname{Hom}_F(E, \mathbb{F})$ is defined using the construction in Milnor–Stasheff Chapter 3.

Remark: There is a subtlety here: You need to express the dual space as a *covariant functor* from vector spaces over \mathbb{F} (and isomorphisms) to vector spaces over \mathbb{F} (and isomorphisms), so that the construction in Milnor–Stasheff applies. This just amounts to inverting the usual map on dual spaces induced by a linear map.

- a) Say $\phi_i: U_i \times \mathbb{F}^n \to E|_{U_i}$ are trivializations with $U_1 \cap U_2 \neq \emptyset$. Describe the transition function for E^* in terms of the transition function $\phi_2^{-1}\phi_1$. (Hint: it's important to notice that in Milnor–Stasheff the trivializations of E^* come from $(\mathbb{F}^n)^*$, rather than from F^n , so you'll need to compose with the natural isomorphism between $(\mathbb{F}^n)^*$ and \mathbb{F}^n .)
- b) Consider the natural embedding $\mathbb{F}P^1 \to \mathbb{F}P^2$ given by sending $[x,y] \in \mathbb{F}P^1 = (\mathbb{F}^2 \{0\})/\mathbb{F}^{\times}$ to $[x,y,0] \in \mathbb{F}P^2 = (\mathbb{F}^3 \{0\})/\mathbb{F}^{\times}$. There is a natural projection

$$\pi: \mathbb{F}P^2 - \{[0,0,1]\} \longrightarrow \mathbb{F}P^1$$

given by $[x,y,z]\mapsto [x,y,0]$ (where we identify $\mathbb{F}P^1$ with its image under the embedding), and each fiber of this projection is just a copy of \mathbb{F} . Show that this projection is locally trivial over the open sets $\{[x,y,0]\in \mathbb{F}P^1: x\neq 0\}$ and $\{[x,y,0]\in \mathbb{F}P^1: y\neq 0\}$ (hence π is a vector bundle), and compute the transition function defined by the two trivializations. (This bundle over $\mathbb{F}P^1$ is the normal bundle of $\mathbb{F}P^1$ in $\mathbb{F}P^2$.)

c) Recall that the tautological bundle over $\mathbb{F}P^1$ can be written as

$$\{[x,y], \overrightarrow{\mathbf{v}} \in \mathbb{F}P^1 \times \mathbb{F}^2 : \overrightarrow{\mathbf{v}} = (tx,ty) \text{ for some } t \in \mathbb{F}\}$$

Prove that when $\mathbb{F} = \mathbb{R}$, the normal bundle from b) is isomorphic to the tautological bundle γ_1^1 over $\mathbb{RP}^1 \cong S^1$ (the "Mobius" bundle), and that when $\mathbb{F} = \mathbb{C}$, the normal bundle is the *dual* of the tautological bundle over $\mathbb{C}P^1 \cong S^2$. (Hint: compare transition functions.)

Remark: In the real case, any metric on a bundle E determines an isomorphism $E \cong E^*$. In the complex case, this is *not* true, because a Hermitian metric is *conjugate linear* in the second coordinate. In the complex case, one gets an isomorphism $E^* \cong \overline{E}$, where \overline{E} is the bundle with the same underlying total space as E, but with the opposite complex structure: in the bundle \overline{E} , multiplication by $z \in \mathbb{C}$ acts the way multiplication by \overline{z} acts on E. The bundles E and $E^* \cong \overline{E}$ are not isomorphic in general, and in particular $c_1(\overline{E}) = -c_1(E)$. See MS Chapter 14.