Math 697 - Characteristic Classes Homework I

Due by noon on Friday, February 3.
Problem 1 (Smooth maps)
Let $M^{d} \subset \mathbb{R}^{n}$ be a d-manifold in the sense defined in class (or in MilnorStasheff), and let $V \subset \mathbb{R}^{m}$ be an open subset of some Euclidean space. Show that the following two conditions on a function $f: V \rightarrow M^{d}$ are equivalent. (Functions satisfying these two equivalent conditions are called smooth.)

- The composition $i \circ f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is smooth, where $i: M^{d} \hookrightarrow \mathbb{R}^{n}$ is the inclusion.
- For each chart $h: U \rightarrow M^{d}$, the composition $h^{-1} f: V \rightarrow U$ is smooth.

Hint: For the harder direction, you'll need to use the Inverse Function Theorem, which states that if $f: W_{1} \rightarrow W_{2}$ is a smooth function between open sets in \mathbb{R}^{n}, and its Jacobian $D_{x} f$ is invertible at some point $x \in W_{1}$, then there are open sets $W_{1}^{\prime} \subset W_{1}$ containing x and $W_{2}^{\prime} \subset W_{2}$ containing $f(x)$, and a smooth map $g: W_{2}^{\prime} \rightarrow W_{1}^{\prime}$ such that g is inverse to (the restriction of) f.

Remark: This problem gives a well-defined notion of smooth maps $f: M^{d} \rightarrow$ N^{k} between manifolds: for each chart $h: U \rightarrow M^{d}$, we require that $f \circ h: U \rightarrow N^{k}$ is smooth in the above sense.

Problem 2 (Projective spaces, see MS Problem 1-B part b)

A) Given a vector $\overrightarrow{\mathbf{x}}=\left(x_{1}, \ldots, x_{k+1}\right) \in S^{k}$, let $\alpha(\overrightarrow{\mathbf{x}})$ be the $(k+1) \times(k+1)-$ matrix with (i, j) th entry $x_{i} x_{j}$. Show that the mapping

$$
\alpha: S^{k} \longrightarrow M_{k+1}(\mathbb{R})
$$

induces a homeomorphism from $\mathbb{R} P^{k}$ to the subspace

$$
P^{k}=\left\{A \in M_{k+1}(\mathbb{R}) \mid A^{T}=A, A A=A, \text { and } \operatorname{trace}(A)=1\right\}
$$

B) Show that the subspace $P^{k} \subset M_{k+1}(\mathbb{R}) \cong \mathbb{R}^{(k+1)^{2}}$ is a smooth manifold of dimension k. (This now gives $\mathbb{R} P^{k}$ the structure of a smooth manifold.)
C) The tangent bundle to S^{k} has an action of the group $\mathbb{Z} / 2$, given by sending $\left(x, \alpha^{\prime}(0)\right)$ to $\left(-x,-\alpha^{\prime}(0)\right.$) (where $x \in S^{k}$ and α is a smooth curve in S^{k} with $\alpha(0)=x)$. Show that α is a smooth map, and that $D \alpha: T S^{k} \rightarrow T P^{k}$ induces a homeomorphism from $T S^{k} /(\mathbb{Z} / 2)$ to $T P^{k}$.

Problem 3 (Principal Bundles)

A) Let X be a topological space and G a topological group with identity element $e \in G$. Say G acts continuously on X (that is, the map $X \times G \rightarrow X$ is continuous). Show that the quotient $\operatorname{map} X \xrightarrow{q} X / G$ has the structure of a principal G-bundle if and only if the following three conditions are satisfied:
(1) The action is free, meaning that if $x \cdot g=x$ for some $x \in X$ and some $g \in G$, then $g=e$.
(2) There exists an open cover $\left\{U_{i}\right\}_{i \in I}$ of X / G and continuous functions s_{i} : $U_{i} \rightarrow X$ such that $q \circ s_{i}=$ Id (we say that the s_{i} are local sections, or slices).
(3) The translation map $t: X \times_{X / G} X \rightarrow G$, defined by setting $t(x, y)$ to be the unique $g \in G$ such that $g \cdot x=y$, is a continuous map.
B) Given an n-dimensional vector bundle $p: E \rightarrow B$, let
$\operatorname{Fr}(E)=\left\{\left(v_{1}, \ldots, v_{n}\right) \in E^{n}: p\left(v_{1}\right)=\cdots=p\left(v_{n}\right)\right.$ and $\left(v_{1}, \ldots, v_{n}\right)$ is linearly independent $\}$
and let $\pi: \operatorname{Fr}(E) \rightarrow B$ be the map $\pi\left(v_{1}, \ldots, v_{n}\right)=p\left(v_{1}\right)$. Show there is an action of $\mathrm{GL}_{n}(\mathbb{R})$ on $\operatorname{Fr}(E)$ such that $\operatorname{Fr}(E) / \mathrm{GL}_{n}(\mathbb{R})$ is homeomorphic to B.
C) Using parts A) and B), show that the for any vector bundle $E \rightarrow B$, the frame bundle $\operatorname{Fr}(E) \rightarrow B$ is a principal $\mathrm{GL}_{n}(\mathbb{R})$-bundle. (This is a little bit confusing, because strictly speaking, A) refers to the quotient map $\operatorname{Fr}(E) \rightarrow \operatorname{Fr}(E) / \mathrm{GL}_{n}(\mathbb{R})$. But by B), this quotient space is homeomorphic to B.) Prove that $\operatorname{Fr}(E) \rightarrow B$ is isomorphic to the principal $\mathrm{GL}_{n}(\mathbb{R})$-bundle obtained from E via clutching.
D) Modify the ideas in A) - C) to show that if $E \rightarrow B$ is a Euclidean bundle, then the subspace of $\operatorname{Fr}(E)$ consisting of orthonormal frames is a principal $O(n)$-bundle over B, isomorphic to the bundle obtained via clutching.

Problem 4 (Mixing)

A) Show that if $P \rightarrow B$ is a principal $O(n)$-bundle, then the mixed bundle $P \times_{O(n)} \mathbb{R}^{n} \rightarrow B$ is a Euclidean vector bundle (in other words, show that there is a natural way to put a metric on this bundle).
B) Prove that the operations of forming frame bundles and mixing are inverse to one another (up to isomorphism). In other words, if $P \rightarrow B$ is a principal $G L_{n}(\mathbb{R})$-bundle and $E \rightarrow B$ is a vector bundle, then

$$
\operatorname{Fr}\left(P \times_{\mathrm{GL}_{n}(\mathbb{R})} \mathbb{R}^{n}\right) \cong P \quad \text { and } \quad(\operatorname{Fr}(E)) \times_{\mathrm{GL}_{n}(\mathbb{R})} \mathbb{R}^{n} \cong E,
$$

and similarly in the Euclidean case (replacing $\mathrm{GL}_{n}(\mathbb{R})$ by $O(n)$).

Problem 5 (Metrics)

A) (MS Problem 2-C) Using a partition of unity, show that every vector bundle over a paracompact space can be given a Euclidean metric.
B) Use the Bundle Homotopy Theorem to show that if \langle,$\rangle and \langle,\rangle^{\prime}$ are two metrics on the same vector bundle $E \rightarrow B$, then there is a bundle isomorphism $\phi: E \rightarrow E$ such that $\langle\phi(\overrightarrow{\mathbf{v}}), \phi(\overrightarrow{\mathbf{w}})\rangle^{\prime}=\langle\overrightarrow{\mathbf{v}}, \overrightarrow{\mathbf{w}}\rangle$ for all $\overrightarrow{\mathbf{v}}, \overrightarrow{\mathbf{w}} \in E$.
C) EXTRA CREDIT: Give a direct construction of a map ϕ satisfying part b). See MS Problem 2-E for a description of how to do this.

