
Math 697 - Characteristic Classes Homework I

Due by noon on Friday, February 3.

Problem 1 (Smooth maps)
Let Md ⊂ Rn be a d–manifold in the sense defined in class (or in Milnor–

Stasheff), and let V ⊂ Rm be an open subset of some Euclidean space. Show that
the following two conditions on a function f : V →Md are equivalent. (Functions
satisfying these two equivalent conditions are called smooth.)

• The composition i ◦ f : Rm → Rn is smooth, where i : Md ↪→ Rn is the
inclusion.
• For each chart h : U →Md, the composition h−1f : V → U is smooth.

Hint: For the harder direction, you’ll need to use the Inverse Function Theorem,
which states that if f : W1 → W2 is a smooth function between open sets in Rn,
and its Jacobian Dxf is invertible at some point x ∈ W1, then there are open
sets W ′1 ⊂ W1 containing x and W ′2 ⊂ W2 containing f(x), and a smooth map
g : W ′2 →W ′1 such that g is inverse to (the restriction of) f .

Remark: This problem gives a well-defined notion of smooth maps f : Md →
Nk between manifolds: for each chart h : U →Md, we require that f ◦h : U → Nk

is smooth in the above sense.

Problem 2 (Projective spaces, see MS Problem 1-B part b)

A) Given a vector
⇀
x= (x1, . . . , xk+1) ∈ Sk, let α(

⇀
x) be the (k + 1) × (k + 1)–

matrix with (i, j)th entry xixj . Show that the mapping

α : Sk −→Mk+1(R)

induces a homeomorphism from RP k to the subspace

P k = {A ∈Mk+1(R) |AT = A, AA = A, and trace(A) = 1}.

B) Show that the subspace P k ⊂ Mk+1(R) ∼= R(k+1)2 is a smooth manifold of
dimension k. (This now gives RP k the structure of a smooth manifold.)

C) The tangent bundle to Sk has an action of the group Z/2, given by sending
(x, α′(0)) to (−x,−α′(0)) (where x ∈ Sk and α is a smooth curve in Sk with
α(0) = x). Show that α is a smooth map, and that Dα : TSk → TP k induces a
homeomorphism from TSk/(Z/2) to TP k.

Problem 3 (Principal Bundles)
A) Let X be a topological space and G a topological group with identity element

e ∈ G. Say G acts continuously on X (that is, the map X×G→ X is continuous).

Show that the quotient map X
q−→ X/G has the structure of a principal G–bundle

if and only if the following three conditions are satisfied:

(1) The action is free, meaning that if x · g = x for some x ∈ X and some
g ∈ G, then g = e.

(2) There exists an open cover {Ui}i∈I of X/G and continuous functions si :
Ui → X such that q ◦ si = Id (we say that the si are local sections, or
slices).
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(3) The translation map t : X ×X/G X → G, defined by setting t(x, y) to be
the unique g ∈ G such that g · x = y, is a continuous map.

B) Given an n–dimensional vector bundle p : E → B, let

Fr(E) = {(v1, . . . , vn) ∈ En : p(v1) = · · · = p(vn) and (v1, . . . , vn) is linearly independent}
and let π : Fr(E) → B be the map π(v1, . . . , vn) = p(v1). Show there is an action
of GLn(R) on Fr(E) such that Fr(E)/GLn(R) is homeomorphic to B.

C) Using parts A) and B), show that the for any vector bundle E → B, the frame
bundle Fr(E) → B is a principal GLn(R)–bundle. (This is a little bit confusing,
because strictly speaking, A) refers to the quotient map Fr(E) → Fr(E)/GLn(R).
But by B), this quotient space is homeomorphic to B.) Prove that Fr(E) → B is
isomorphic to the principal GLn(R)–bundle obtained from E via clutching.

D) Modify the ideas in A) - C) to show that if E → B is a Euclidean bundle, then
the subspace of Fr(E) consisting of orthonormal frames is a principal O(n)–bundle
over B, isomorphic to the bundle obtained via clutching.

Problem 4 (Mixing)
A) Show that if P → B is a principal O(n)–bundle, then the mixed bundle

P ×O(n) Rn → B is a Euclidean vector bundle (in other words, show that there is
a natural way to put a metric on this bundle).

B) Prove that the operations of forming frame bundles and mixing are inverse
to one another (up to isomorphism). In other words, if P → B is a principal
GLn(R)–bundle and E → B is a vector bundle, then

Fr
(
P ×GLn(R) R

n
) ∼= P and (Fr(E))×GLn(R) R

n ∼= E,

and similarly in the Euclidean case (replacing GLn(R) by O(n)).

Problem 5 (Metrics)
A) (MS Problem 2-C) Using a partition of unity, show that every vector bundle

over a paracompact space can be given a Euclidean metric.

B) Use the Bundle Homotopy Theorem to show that if 〈 , 〉 and 〈 , 〉′ are two
metrics on the same vector bundle E → B, then there is a bundle isomorphism

φ : E → E such that 〈φ(
⇀
v), φ(

⇀
w)〉′ = 〈⇀v ,⇀w〉 for all

⇀
v ,

⇀
w∈ E.

C) EXTRA CREDIT: Give a direct construction of a map φ satisfying part b).
See MS Problem 2-E for a description of how to do this.


