1. Find the equation of a line that is perpendicular to the line $y=\frac{3}{2} x+1$ and goes through the point $(-1,4)$.
2. Sketch the graph of $f(x+3)-2$, where $f(x)=x^{2}$ for $-4 \leq x \leq 4$.
3. Estimate the instantaneous rate of change of $f(x)=\sqrt{x+5}$ at $x=-1$ by finding the slopes of secant lines.over the intervals $[-4,-1]$ and $[-1,4]$.
4. Find $\sin \theta, \cos \theta$ and $\csc \theta$ if $\cot \theta=6$.
5. Find $\sin \theta, \cos \theta$ and $\sec \theta$ if $\tan \theta=-7$ and $\frac{3 \pi}{2} \leq \theta<2 \pi$.
6. Find $\cos \theta$ and $\tan \theta$ if $\sin \theta=0.4$ and $\frac{\pi}{2} \leq \theta<\pi$.
7. Solve for $0 \leq \theta<2 \pi$: $\sqrt{2} \sin (3 \theta)=\sin (6 \theta)$.
8. Solve for $0 \leq \theta<2 \pi: \quad \sin \theta=\cos (2 \theta)$.
9. Find the domain of $f(x)=\ln (\ln x)$
10. Find a domain on which f is one-to-one and a formula for the inverse of f^{-1} restricted to this domain:
(a) $f(x)=\frac{x+3}{x+2}$.
(b) $f(x)=\frac{3}{\sqrt{x^{2}+2}}$
11. Compute without using a calculator: $\sin ^{-1}\left(\sin \left(-\frac{5 \pi}{6}\right)\right)$ and $\tan ^{-1}\left(\tan \left(\frac{3 \pi}{4}\right)\right)$
12. Simplify by referring to the appropriate triangle or trigonometric identity:

$$
\cot \left(\sec ^{-1} x\right)
$$

13. Solve each equation for x :
(a) $e^{2 x+1}=4 e^{5-3 x}$.
(b) $\ln x+\ln (x-1)=1$.
14. Calculate directly, without using a calculator: $\log _{5} 10+\log _{5} 20-3 \log _{5} 2$.
15. If a bacteria population starts with 100 bacteria and doubles every three hours, then the number of bacteria after t hours is $f(t)=1000 \cdot 2^{t / 3}$. Find the inverse of this function and explain its meaning. When will the population reach 50,000 ?
16. Do problems 38 and 46 on p. 78 (section 2.2).
17. Evaluate $\quad \lim _{x \rightarrow 3}\left(x^{2}+9 x^{-3}\right)$.
18. Assume that $\lim _{x \rightarrow-2} f(x)=3$, compute
(a) $\lim _{x \rightarrow-2} x^{2} f(x)$.
(b) $\lim _{x \rightarrow-2}(x+1)[f(x)]^{2}$.
19. Calculate $\lim _{x \rightarrow \pi / 4} e^{\sin (x)}$.
20. Say $f(x)$ is defined by

$$
f(x)= \begin{cases}x^{2}+4 x & \text { for } x<0 \\ \sin (x) & \text { for } 0 \leqslant x \leqslant \pi / 2 \\ \cos ^{2}(x) & \text { for } x>\pi / 2\end{cases}
$$

At what points is $f(x)$ discontinuous? For each of these points, is the discontinuity a jump discontinuity, infinite discontinuity, removable discontinuity, or none of these?
21. Draw the graph of a function $f(x)$ with all of the following properties:
(a) $f(x)$ has a removable discontinuity at $x=-1$,
(b) $f(x)$ has a discontinuity at $x=1$ which is neither a jump discontinuity, a removable discontinuity, nor an infinite discontinuity.
(c) $f(x)$ is defined and continuous except at $x=-1$ and $x=1$.
22. Evaluate the following limits, or explain why they do not exist.
(a) $\lim _{x \rightarrow 5} \frac{x^{2}-11 x+30}{x-5}$
(b) $\lim _{h \rightarrow 0^{+}} \frac{\sqrt{5 h+10 h^{2}}-\sqrt{5 h}}{h}$
(c) $\lim _{x \rightarrow 2} \sin \left(\frac{x-2}{x^{2}-4 x+4}\right)$
(d) $\lim _{x \rightarrow 9}\left[\frac{1}{\sqrt{x}-3}-\frac{6}{x-9}\right]$
23. Find $\lim _{x \rightarrow 0} x^{2} \cos \left(\frac{1}{x}\right)$.
24. Show that $\cos x=x$ has a solution on the interval $[0,1]$. Justify your answer.
25. Use the definition of derivative to find $f^{\prime}(2)$ for $f(x)=\sqrt{3+x}$.

