1. Compute the following limits:
(a) $\lim _{x \rightarrow \frac{\pi}{2}} \frac{\cot x}{\csc x}$
(b) $\lim _{x \rightarrow 0^{+}}\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x^{2}+x}}\right)$
(c) $\lim _{x \rightarrow 4} \cos ^{-1}\left(\frac{x}{8}\right)$
(d) $\lim _{x \rightarrow 0} \frac{\tan x}{x}$
(e) $\lim _{x \rightarrow 0} \frac{e^{x}-1}{\sin x}$
(f) $\lim _{x \rightarrow \infty} x^{1 / x}$
(g) $\lim _{x \rightarrow 1} \frac{e^{x}-e}{\ln x}$.
2. For the function $f(x)=\left\{\begin{array}{ll}x^{2}+c, & x<3 \\ 2 x-c, & x \geq 3\end{array}\right.$, determine the value of c that makes the function continuous.
3. Use the definition of derivative to find $f^{\prime}(x)$ for $f(x)=\frac{1}{\sqrt{x+3}}$.
4. Find the derivative of the following functions:
(a) $f(x)=x^{2} e^{-x^{2}}$
(b) $f(x)=e^{-3 x} \sin 2 x$
(c) $g(x)=(2 x+1)^{4}\left(x^{3}-x+2\right)^{5}$
(d) $f(x)=\sin ^{-1}(2 x+1)$
(e) $f(x)=x^{\cos ^{-1} x}$
(f) $g(x)=e^{\tan ^{-1} x}$
(g) $f(x)=\log _{4}\left(x^{2}-5\right)$
(h) $f(x)=x \ln \left(e^{x}+1\right)$
(j) $f(x)=7^{1-x^{3}}$
5. Find all points on the graph of $y=\frac{\cos (x)}{2+\sin (x)}$ at which the tangent line is horizontal.
6. Find an equation of the tangent line to the curve $y=\frac{x}{1+x^{2}}$ at $x=2$.
7. Calculate the first and second derivatives of each of the following functions. It is not necessary to simplify your answers.
(a) $f(x)=e^{x} \cos (x)$
(b) $g(x)=x^{-3 / 4}-4 x^{7}+x^{1 / 2}$
(c) $h(x)=x^{3} \sin (x)$
(d) $k(x)=\left(x^{2}+x\right) \tan (x)$
8. Use implicit differentiation to find $\frac{d y}{d x}$:
(a) $x^{2}-2 x y+y^{3}=3$
(b) $y \sin \left(x^{2}\right)=x \sin \left(y^{2}\right)$
9. Use logarithmic differentiation to find the derivative of the following functions:
(a) $y=\frac{\sqrt{x+5} \cdot(x-2)^{3}}{e^{x^{2}}\left(x^{3}+1\right)^{4}}$
(b) $y=(\sin x)^{x}$
10. A plane is flying horizontally at an altitude of 2 miles and a speed of $500 \mathrm{mi} / \mathrm{h}$ passes directly over a radar station. Find the rate at which the distance from the plane to the station is increasing when it is 4 miles away from the station.
11. A boat is pulled into a dock by a rope attached to the bow of the boat and passing through a pulley on the dock that is 1 m higher than the bow of the boat. If the rope is pulled in at a rate of $1 \mathrm{~m} / \mathrm{s}$, how fast is the boat approaching the dock when it is 8 m from the dock?
12. Find the linearization at $x=1$ of $y=e^{x} \ln x$.
13. Find the maximum and minimum values of the function on the given interval:

$$
\begin{equation*}
f(x)=\frac{1-x}{x^{2}+3 x}, \tag{1,4}
\end{equation*}
$$

14. Find the critical points and the intervals on which the function is increasing or decreasing, and apply the First Derivative Test to each critical point to determine whether it is a local maximum, a local minimum, or neither. Additionally, find the intervals on which the function is concave up or down, and any point of inflection:

$$
y=\theta+\cos \theta, \quad[0,2 \pi]
$$

15. The graph of the derivative f^{\prime} of a continuous function f is shown below:

(a) On what intervals is f increasing or decreasing?
(b) At what values of x does f have a local maximum or minimum?
(c) On what intervals is f concave upward or downward?
(d) State the x-coordinates of the points of inflection.
(e) Assuming that $f(0)=0$, sketch a possible graph of f.
16. Sketch the graph of the following functions. Indicate the asymptotes, the local extrema and points of inflection:
(a) $f(x)=x-2 \ln \left(x^{2}+1\right)$
(b) $f(x)=\frac{x}{\sqrt{x^{2}+1}}$
17. Problem 8, p. 265.
18. Problem 10, p. 265.
19. Consider the graph of the function $f(x)=\frac{x^{3}}{1+x^{4}}$.
a) Find a formula for the slope of the secant line between $(x, f(x))$ and $(-x, f(-x))$.
b) At what point x is the slope in part a) maximized? Make sure to explain why this point is a global maximum.
20. Problem 31, p. 267.
